
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Charleston Library Conference

(Un)Structuring for the Next Generation: New Possibilities for (Un)Structuring for the Next Generation: New Possibilities for

Library Data with NoSQL Library Data with NoSQL

Matthew D. Harrington
Duke University Libraries, matthew.harrington@duke.edu

Dennis B. Christman
Duke University Libraries, dennis.christman@duke.edu

Author ORCID Identifier: https://orcid.org/0000-0003-0857-7923

Follow this and additional works at: https://docs.lib.purdue.edu/charleston

 Part of the Cataloging and Metadata Commons

An indexed, print copy of the Proceedings is also available for purchase at:

http://www.thepress.purdue.edu/series/charleston.

You may also be interested in the new series, Charleston Insights in Library, Archival, and Information

Sciences. Find out more at: http://www.thepress.purdue.edu/series/charleston-insights-library-archival-

and-information-sciences.

Matthew D. Harrington and Dennis B. Christman, "(Un)Structuring for the Next Generation: New
Possibilities for Library Data with NoSQL" (2018). Proceedings of the Charleston Library Conference.
http://dx.doi.org/https://doi.org/10.5703/1288284317069

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please
contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/237205607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/charleston
https://docs.lib.purdue.edu/charleston?utm_source=docs.lib.purdue.edu%2Fcharleston%2F2018%2Ftechnologyandtrends%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1270?utm_source=docs.lib.purdue.edu%2Fcharleston%2F2018%2Ftechnologyandtrends%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.thepress.purdue.edu/series/charleston
http://www.thepress.purdue.edu/series/charleston-insights-library-archival-and-information-sciences
http://www.thepress.purdue.edu/series/charleston-insights-library-archival-and-information-sciences
http://dx.doi.org/https://doi.org/10.5703/1288284317069

348  Technology and Trends Copyright of this contribution remains in the name of the author(s)
https://doi.org/10.5703/1288284317069

(Un)Structuring for the Next Generation: New Possibilities for Library Data
with NoSQL

Matthew D. Harrington, Duke University Libraries, matthew​.harrington​@duke​.edu

Dennis B. Christman, Duke University Libraries, dennis​.christman​@duke​.edu

Introduction
A recent ACRL TechConnect blog post pointed out
some of the difficulties working with personal names
as data. The assumptions that names do not change
or that all full names have a first and last name are
not always true. Nor is it true that a preferred name
is preferred in all contexts (Phetteplace, 2018).
However, most library systems are designed based
on assumptions such as these, and when excep-
tions are found, the data are forced to comply with
those assumptions rather than challenging them.
Libraries may be driven by the lofty idea that clean,
structured data is the ultimate achievement, but the
structure of library data is rarely uniform and static.
It is dynamic, diverse, and increasing at a rapid pace.
Instead of trying to force nonconforming data into
a rigid structure, libraries need to examine ways in
which that structure can become more flexible in
order to accommodate these changes.

These changes reflect a larger trend that has been
ongoing for many years. In 2001, Doug Laney
published an article that outlined three data trends
that would become known as “Gartner’s 3 Vs.” The
model is meant to show how the demands on our
data system have changed and will continue to
change, and in response to these changing demands,
data systems will need to adapt. The first trend
Laney describes is volume, which refers to the sheer
amount of data a system needs to interact. The
second, variety, refers to different types of data and
a decrease in the consistency of that data. Laney
goes as far as saying that without significant work
to address this, it will be the single greatest barrier
to data management. Lastly, velocity refers to the
rates at which our systems are accessed and need to
transact data (Laney, 2001).

In the context of the library, these trends have all
made an impact. As libraries try to connect users with
more resources, systems need to interact with more
data, thus increasing the volume of resource meta-
data. The metadata is then pulled from an increasing
number of sources, mixing MARC catalogs, Dublin
Core repositories, article databases, and more. And

though the velocity of library data does not compare
with the system traffic of major e-commerce or social
media sites, the library still must process an influx of
transactional data from both patrons and vendors.
Strained resources and budget cuts further intensify
these trends for the library. The library is headed
toward a critical tipping point in data management if
a flexible alternative is not found.

Structured and Unstructured Data
A useful concept to use while examining the flexibil-
ity of library data structures is that of structured and
unstructured data. Structured data follows a rigidly
defined data model that allows a machine to easily
make connections and process it, such as data stored
in a relational database. Conversely, unstructured
data is very loose. There is little uniformity in where
different data points may appear. This makes it very
difficult for a machine to process and relate to other
data. For example, a group of Twitter posts contains
primarily human-readable information.

Some data are highly structured, and some highly
unstructured, but most lie somewhere in between.
Even in Twitter posts, an example commonly pro-
vided for unstructured data, there are some pieces
of data that appear very regularly. A machine can
easily detect who posted the tweet, who liked it,
who reposted it, who replied, and when each of
those events happened. Only the body of the posts
is truly difficult to process by machine. But the data
remain divided between what can easily be pro-
cessed by machine and what must be interpreted by
a human.

Semistructured data, on the other hand, is a blend
of both structured and unstructured data. It contains
structure, but that structure is more fluid. Instead
of applying a rigid structure to data, semistructured
data has a flexible schema that adapts to changes
easily, yet it remains machine readable.

Libraries can use this framework to look at how effec-
tive their current systems are at storing different types

Charleston Conference Proceedings 2018  349

of library data. On the structured end is circulation
data. The exact fields collected will vary by system and
institution, but it is easy to have uniform data regard-
ing circulation transactions. Patron data, on the other
hand, is less structured. Most fields collected will be
uniform for most patrons, but data models may vary
based on factors such as patron type. An institution
might want to store data related to a student’s aca-
demic department, but that field may not be relevant
for most staff. Likewise, acquisitions data may vary
according to vendor or type of purchase. The data
about a book purchase from an institution’s own uni-
versity press is going to look vastly different from an
international order for a subscription-based streaming
video package. There are similarities between these
orders, but there are also differences, which require a
more flexible data model.

Arguably the least structured type of library data is
bibliographic data. MARC data is often thought of as
very ordered and structured, but this framework dis-
mantles that notion. There are certainly well-defined
rules on what data to put where in a MARC record,
but taking that record and fitting it into a rigid model
that a relational database can interpret is very chal-
lenging. MARC can be used to describe an enormous
variety of resources. It can describe books, films,
music, manuscripts, maps, datasets, and many more
resource types. Each resource can then be physical
or digital and published as a single monograph, a
multipart monograph, a serial, or an integrating
resource. Every combination requires a different set
of data to accurately describe it. Even something
as simple as the title of a book can be complicated.
MARC has 14 types of title fields, many of which are
repeatable. Modeling this in a relational database
would require either a single table with a long list of
attributes, most of which would be empty, or many
small tables to represent each different possibility,
which would require a lot of on-demand processing
power to join the tables together when needed.
Yet most integrated library systems continue to use
a relational database to store MARC data. To find
alternatives, one must first examine the relational
database model to study how it operates and then
determine whether the model is most appropriate
for storing library data, MARC or otherwise.

The Relational Database Model
Even though there are many commercial and open-
source options available for relational database
systems (RDMS), they share some characteristics. On
a basic level, they rely upon the storage of structured

data in a flat, tabular format. This means each attri-
bute in a table must conform to specific rules regard-
ing data type and size, and each can only contain up
to one value. This schema is defined in the design
process before the database is populated with data,
and these design decisions can be difficult to change
once the database is built.

Relational databases also rely on the use of joins.
One of the main functions of the relational database
is to reduce redundancy through database normal-
ization, thereby maintaining data integrity. Nor-
malization involves logically dividing attributes into
different relations and joining those relations using
primary and foreign keys. This can have a dramatic
effect on performance, though. As systems become
more complex, the number of joins multiplies, and as
a result, simple queries must access additional tables
of data to return the necessary attributes. Not only
does this slow performance, it also leads to difficulty
distributing the database across multiple servers.

Lastly, relational databases generally use SQL to
query the data. SQL is a powerful language for query-
ing data, and it works very well when the schema is
static. However, because the data are so reliant upon
joined tables with rigidly defined attributes, slight
changes to those attributes can severely disrupt the
functionality of the query. Furthermore, SQL cannot
easily query complex relationships nor complex doc-
uments stored within an attribute.

Despite these disadvantages, relational databases
are popular and widely used, partially because they
perform well in the right circumstance and partially
because there have been few alternative solutions.
In the library world, the relational database has
been a fixture in both commercial and open-source
integrated library systems for many years, but the
increased volume, variety, and velocity of data is
quickly rendering them ineffective. New material
types continually present difficulties in cataloging,
new packaging/pricing models lead to complex
workarounds in acquisitions, and new forms of tech-
nology challenge even the communication formats
stored in patron records. As a result, libraries engage
in tedious data cleanup and normalization projects
to ensure all data fit within the parameters of the
database model. In this sense, data are often viewed
as malleable pieces that must adapt to a rigid struc-
ture rather than vice versa. Instead, libraries need a
system flexible enough to handle messy data rather
than constantly trying to fit messy data into neatly
arranged cells.

350  Technology and Trends

The NoSQL Database Model
Recently, there has been an increasingly popular
alternative to relational databases. When data is
dynamic and the schema must have flexibility to
accommodate those changes, NoSQL databases offer
a viable solution. NoSQL as a term describes many
types of nonrelational databases, but they generally
possess similar properties. They usually have flexible
and extensible schemas, which do not need to be
defined before data has been added. Data is typically
stored as JSON or XML documents rather than orga-
nized in a table. And NoSQL databases use languages
other than SQL to query data.

There are several types of NoSQL databases, and
the simplest is the key-value database. Key-value
databases are composed of data values paired with
associated keys for retrieval. The range of those
values may vary. Some are even able to store JSON
documents as values, which makes them appear
more like document databases. This simple structure
allows them to be highly scalable when there is a
need to continually write and retrieve data, such as
storing circulation transactions in a library system.

Document databases typically store JSON or XML
documents, and because they represent holistic
views of data, retrieval is fast. Null values are unnec-
essary; the only data contained within the document
are the data elements with values. Furthermore,
those documents do not have to contain the same
elements. A document describing a photograph
would require different elements than one describ-
ing a print book, much like parts of a MARC record
are tailored to a specific material type. The doc-
ument model is more appropriate when data has
complex descriptions, especially those containing
hierarchies acting as one-to-many relationships, such
as a patron record. The patron record may contain
elements unique to the specified patron type, and
it may also use nested data to store repeatable ele-
ments, such as addresses stored in an array.

A third NoSQL model is the graph database, which
uses a triple to store relationships between data. A
triple is simply a three-part construction consisting
of a subject, a predicate, and an object. To represent
this structure, graph databases use nodes and edges,
so in the structure of a triple, nodes are subjects and
objects, and the edge is the predicate defining the
relationship between those two nodes. This type
of database is useful for highlighting relationships,
especially many-to-many relationships such as those

found in social media sites. Library bibliographic
data also contains several types of many-to-many
relationships. For example, a book may have several
authors and one author may write several books.
The author and the work might be the two nodes in
this triple, and the edge describes the author/work
relationship.

Another type of NoSQL database that combines the
characteristics of these three models is the multi-
model database. Multimodel databases may function
as key-value stores, document databases, and graph
databases at the same time. Multimodel databases
have broader capabilities for managing a variety of
data, which means a single database may be able to
adapt to the diverse data formats and relationships
while also maintaining the flexibility to change as new
technologies and workflows force that data to change.

A Sample NoSQL Database
To show what a multimodel NoSQL database can do,
we created a sample database that included a list of
actors and the films in which they acted. The goal
was to be able to query graph traversals between
two actors in order to determine how many degrees
of separation exist between them. For our database,
we chose ArangoDB. Like many NoSQL databases,
there is a “community edition” available to freely
download.

ArangoDB operates like a document database, except
those documents are stored as a value with a key
(see Figure 1), making it also function like a key-value
database for retrieval. Except for the three meta-
data elements at the top of the document, other
documents are not required to contain the same
elements.

Figure 1. Sample JSON document for the film Black Sheep.

Charleston Conference Proceedings 2018  351

Documents are stored within collections, but a col-
lection may be set up to act as either a node or an
edge in order to graph links between documents.
Edges look like nodes, but they also contain “from”
and “to” elements to construct the link between
two nodes. This allows the database to contain
triples, which define the relationships between the
documents stored in nodes.

To query data stored in collections, ArangoDB uses
a proprietary language called AQL. Most queries
function like “for” loops. This allows queries to
run an indeterminate number of graph traversals
across the edge. When querying for degrees of
separation between actors, the number of degrees
is unknown, which makes this a difficult query
to construct in a relational database. However,
ArangoDB can easily process the query, using a
simple for loop to return the results in Figure
2. These show that Chris Farley acted with Tim
Matheson in the film Black Sheep, and Tim Mathe-
son starred with Kevin Bacon in National Lampoon’s
Animal House. Therefore, there are two degrees
of separation between Chris Farley and Kevin
Bacon.

The graph function in ArangoDB also allows those
relationships between actors to be visualized. To see
all actors within one degree of separation of Chris
Farley, a graph can be constructed based on the edge
collections (see Figure 3).

Here, Chris Farley is at the center of the graph, and
the five films from this database starring Chris Farley
link out from his name. Actors from those five films
appear linked to those films, and the search depth
of the graph may be expanded outward to include

Figure 2. Degrees of separation between Kevin Bacon and
Chris Farley.

Figure 3. Graph a single degree of separation from Chris Farley.

352  Technology and Trends

additional films and actors. This allows a viewer to
navigate through the links that connect an actor to
other actors and films.

NoSQL and Library Data
NoSQL databases offer a more flexible structure
than traditional relational database systems, and
therefore they may be better suited for the increased
variety, volume, and velocity of library data.
NoSQL documents store data without the need for

predefined schemas that have placed limits upon the
rows of relational tables, and because they provide
a holistic view of the document, there is no need
to access data that may be spread across multiple
tables through complex joins. Furthermore, using a
more powerful scripting language as an alternative
to SQL means the database may be able to handle
more complex queries. In order to effectively deliver
quality resources to patrons, libraries will need to
develop new systems that utilize technologies like
NoSQL to match the growing demands of our data.

References
Laney, D. (2001, February 6). 3D data management: Controlling data volume, velocity, and variety. Application

Delivery Strategies. Retrieved from https://​blogs​.gartner​.com​/doug​-laney​/files​/2012​/01​/ad949​-3D​-Data​
-Management​-Controlling​-Data​-Volume​-Velocity​-and​-Variety​.pdf

Phetteplace, E. (2018, May 14). Names are hard. ACRL TechConnect. Retrieved from https://​acrl​.ala​.org​
/techconnect​/post​/names​-are​-hard/

	(Un)Structuring for the Next Generation: New Possibilities for Library Data with NoSQL
	

	tmp.1572531953.pdf.evE51

