974 research outputs found

    Letter from E[dward] H. Harriman to John Muir, 1905 Jan 12.

    Get PDF
    TELEGRAM SENT.Form 6 S. OTo John Muir,Martinez, California.TIMEUnion Pacific Railroad Co.,120 BROADWAY,New York, January 12, 1905Have wired Mr. Wm. F. Herrin, asking him to give consideration to subject of your letter January 6th. Please send him copy of it at San Francisco.E. H. Harriman.AM-E.0350

    Chronicles of Oklahoma

    Get PDF
    Article details the economic struggles faced by the Creek Nation in the decade immediately following the Civil War

    Looking for Gluon Substructure at the Tevatron

    Full text link
    The impact of nonrenormalizable gluon operators upon inclusive jet cross sections is studied. Such operators could arise in an effective strong interaction Lagrangian from gluon substructure and would induce observable cross section deviations from pure QCD at high transverse jet energies. Comparison of the theoretical predictions with recent CDF data yields a lower limit on the gluon compositeness scale Λ\Lambda. We find \Lambda > 2.03 \TeV at 95%95\%~CL.Comment: 12 pages with 2 figures not included but available upon request, CALT-68-1872, HUTP-93/A01

    Heavy Top Quark Searches in the Di-Lepton Mode at the Tevatron

    Full text link
    We present the results of a detailed study of the effects of bb-tagging on the heavy top-quark signal and backgrounds for the modes of the di-lepton plus two high transverse energy jets at the Fermilab Tevatron. The general characteristics of the heavy top-quark signal events are also discussed so that a comparison can be made between bb-tagging and imposing stringent kinematical cuts to eliminate backgrounds.Comment: uses PHYZZX and TABLES macros, 10 pages, four figures not included (available by request), FERMILAB-Pub-93/105-

    Relative distributions of W's and Z's at low transverse momenta

    Full text link
    Despite large uncertainties in the W±W^\pm and Z0Z^0 transverse momentum (qTq_T) distributions for q_T\lsim 10 GeV, the ratio of the distributions varys little. The uncertainty in the ratio of WW to ZZ qTq_T distributions is on the order of a few percent, independent of the details of the nonperturbative parameterization.Comment: 13 pages in revtex, 5 postscript figures available upon request, UIOWA-94-0

    Towards a Precise Parton Luminosity Determination at the CERN LHC

    Get PDF
    A new approach to determine the LHC luminosity is investigated. Instead of employing the proton-proton luminosity measurement, we suggest to measure directly the parton-parton luminosity. It is shown that the electron and muon pseudorapidity distributions, originating from the decay of W+, W- and Z0 bosons produced at 14 TeV pp collisions (LHC), constrain the x distributions of sea and valence quarks and antiquarks in the range from about 3 x 10**-4 to about 10**-1 at a Q**2 of about 10**4 GeV**2. Furthermore, it is demonstrated that, once the quark and antiquark structure functions are constrained from the W+,W- and Z0 production dynamics, other quark-antiquark related scattering processes at the LHC like q-qbar --> W+W- can be predicted accurately. Thus, the lepton pseudorapidity distributions provide the key to a precise parton luminosity monitor at the LHC, with accuracies of about +-1% compared to the so far considered goal of +-5%.Comment: plain tex, 14 pages, 5 figure

    Integrated classification and assessment of lakes in Wales: Phase III

    Get PDF

    Enhancing the top signal at Tevatron using Neural Nets

    Get PDF
    We show that Neural Nets can be useful for top analysis at Tevatron. The main features of ttˉt\bar t and background events on a mixed sample are projected in a single output, which controls the efficiency and purity of the ttˉt\bar t signal.Comment: 11 pages, 6 figures (not included and available from the authors), Latex, UB-ECM-PF 94/1

    QCD Corrections to Production of Higgs Pseudoscalars

    Full text link
    Models of electroweak symmetry breaking with more than a single doublet of Higgs scalars contain a neutral pseudoscalar boson. The production of such a pseudoscalar in hadron collisions proceeds primarily via gluon fusion through a top-quark loop (except for those models in which the pseudoscalar coupling to bottom quarks is strongly enhanced). We compute the QCD corrections to this process in the heavy-quark limit, using an effective Lagrangian derived from the axial anomaly.Comment: 9 pages, (BNL number added, 1 typo corrected, PHYZZX format, 4 figures not included, available on request), BNL-4906
    corecore