47 research outputs found

    Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence.

    Get PDF
    The two cultivated species of buckwheat, Fagopyrum esculentum (common buckwheat) and F. tataricum (Tartary buckwheat) are Chinese domesticates whose origins are usually thought to lie in upland southwestern China, outside the major centres of agricultural origins associated with rice and millet. Synthesis of the macro- and microfossil evidence for buckwheat cultivation in China found just 26 records across all time periods, of which the majority were pollen finds. There are few or no identifying criteria distinguishing F. esculentum and F. tataricum for any sample type. The earliest plausibly agricultural Fagopyrum occurs in northern China from the mid 6th millennium cal bp. The archaeobotanical record requires reconciliation with biogeographic and genetic inferences of a southwestern Chinese origin for buckwheat. Scrutiny of the genetic data indicates limitations related to sampling, molecular markers and analytical approaches. Common buckwheat may have been domesticated at the range margins of its wild progenitor before its cultivation expanded in the north, mediated by changing ranges of wild species during the Holocene and/or by cultural exchange or movement of early agriculturalists between southwest China, the Chengdu Plain and the southern Loess Plateau. Buckwheat probably became a pan-Eurasian crop by the 3rd millennium cal bp, with the pattern of finds suggesting a route of westward expansion via the southern Himalaya to the Caucasus and Europe.MKJ and HVH were supported by a European Research Council Advanced Investigator award to MKJ (GA249642, ‘Food Globalization in Prehistory)’. HVH was supported by a University of Cambridge Returning Carers’ Scheme award. SX was supported by grants from the National Natural Science Foundation of China (41471167), and National Scholarship Fund of China (CSC no. 201504910101)

    Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum.

    Get PDF
    Panicum miliaceum (broomcorn millet) is a tetraploid cereal, which was among the first domesticated crops, but is now a minor crop despite its high water use efficiency. The ancestors of this species have not been determined; we aimed to identify likely candidates within the genus, where phylogenies are poorly resolved. Nuclear and chloroplast DNA sequences from P. miliaceum and a range of diploid and tetraploid relatives were used to develop phylogenies of the diploid and tetraploid species. Chromosomal in situ hybridization with genomic DNA as a probe was used to characterize the genomes in the tetraploid P. miliaceum and a tetraploid accession of P. repens. In situ hybridization showed that half the chromosomes of P. miliaceum hybridized more strongly with labelled genomic DNA from P. capillare, and half with labelled DNA from P. repens. Genomic DNA probes differentiated two sets of 18 chromosomes in the tetraploid P. repens. Our phylogenetic data support the allotetraploid origin of P. miliaceum, with the maternal ancestor being P. capillare (or a close relative) and the other genome being shared with P. repens. Our P. repens accession was also an allotetraploid with two dissimilar but closely related genomes, the maternal genome being similar to P. sumatrense. Further collection of Panicum species, particularly from the Old World, is required. It is important to identify why the water-efficient P. miliaceum is now of minimal importance in agriculture, and it may be valuable to exploit the diversity in this species and its ancestors

    Genetic evidence for a western Chinese origin of broomcorn millet (Panicum miliaceum).

    Get PDF
    Broomcorn millet (Panicum miliaceum) is a key domesticated cereal that has been associated with the north China centre of agricultural origins. Early archaeobotanical evidence for this crop has generated two major debates. First, its contested presence in pre-7000 cal. BP sites in eastern Europe has admitted the possibility of a western origin. Second, its occurrence in the 7th and 8th millennia cal. BP in diverse regions of northern China is consistent with several possible origin foci, associated with different Neolithic cultures. We used microsatellite and granule-bound starch synthase I (GBSSI) genotype data from 341 landrace samples across Eurasia, including 195 newly genotyped samples from China, to address these questions. A spatially explicit discriminative modelling approach favours an eastern Eurasian origin for the expansion of broomcorn millet. This is consistent with recent archaeobotanical and chronological re-evaluations, and stable isotopic data. The same approach, together with the distribution of GBSSI alleles, is also suggestive that the origin of broomcorn millet expansion was in western China. This second unexpected finding stimulates new questions regarding the ecology of wild millet and vegetation dynamics in China prior to the mid-Holocene domestication of millet. The chronological relationship between population expansion and domestication is unclear, but our analyses are consistent with the western Loess Plateau being at least one region of primary domestication of broomcorn millet. Patterns of genetic variation indicate that this region was the source of populations to the west in Eurasia, which broomcorn probably reached via the Inner Asia Mountain Corridor from the 3rd millennium BC. A secondary westward expansion along the steppe may have taken place from the 2nd millennium BC.European Research Council Advanced Investigator award (GA249642, ‘Food Globalization in Prehistory) Marie Curie Initial Training Network (BEAN—Bridging the European and Anatolian Neolithic, GA no. 289966) Wellcome Trust Senior Research Fellowship (Grant: 100719/Z/12/Z). Gerka-Henkel Stiftung (AZ 05/ZA/12), and NSFC (41672171) National Natural Science Foundation of China (31271791) Shanxi Scholarship Council of China (2016-066) China Agriculture Research System (CARS-06-13.5-A16

    Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity

    Get PDF
    The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields

    Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World

    Get PDF
    We have collated and reviewed published records of the genera Panicum and Setaria (Poaceae), including the domesticated millets Panicum miliaceum L. (broomcorn millet) and Setaria italica (L.) P. Beauv. (foxtail millet) in pre-5000 cal b.c. sites across the Old World. Details of these sites, which span China, central-eastern Europe including the Caucasus, Iran, Syria and Egypt, are presented with associated calibrated radiocarbon dates. Forty-one sites have records of Panicum (P. miliaceum, P. cf. miliaceum, Panicum sp., Panicum type, P. capillare (?) and P. turgidum) and 33 of Setaria (S. italica, S. viridis, S. viridis/verticillata, Setaria sp., Setaria type). We identify problems of taphonomy, identification criteria and reporting, and inference of domesticated/wild and crop/weed status of finds. Both broomcorn and foxtail millet occur in northern China prior to 5000 cal b.c.; P. miliaceum occurs contemporaneously in Europe, but its significance is unclear. Further work is needed to resolve the above issues before the status of these taxa in this period can be fully evaluated

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore