8 research outputs found

    TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells

    Get PDF
    TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4+CD8+ double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR)

    Solvent impact on esterification and film formation ability of nanofibrillated cellulose

    No full text
    In this study we have manufactured nanofibrillar cellulose and modified the fibre surface with ester groups in order to hydrophobise the surface. Nanofibrillated cellulose was chosen to demonstrate the phenomena, since due to its high surface area the effects at issue are pronounced. The prepared NFC ester derivatives were butyrate, hexanoate, benzoate, naphtoate, diphenyl acetate, stearate and palmitate. X-ray photoelectron spectroscopy, solid state NMR and contact angle measurements were used to demonstrate the chemical changes taking place on the cellulose surface. NFC ester derivatives can be prepared after a careful solvent exchange to a water-free solvent medium has been carried out. Butyl and palmitoyl esters were chosen for film forming tests due to the difference in their carbon chain lengths, and their contact angles and water vapour and oxygen permeation rates were studied. The prepared nanocellulose esters show increased hydrophobicity even at very low levels of substitution and readily form films when the films are prepared from acetone dispersions. The permeation rates suggest a potential use as barrier materials

    ExercĂ­cio fĂ­sico, receptores β-adrenĂ©rgicos e resposta vascular Physical exercise, β-adrenergic receptors, and vascular response

    No full text
    O exercício aeróbio promove efeitos benéficos na prevenção e tratamento de doenças como hipertensão arterial, aterosclerose, insuficiência venosa e doença arterial periférica. Os receptores &#946;-adrenérgicos estão presentes em várias células. No sistema cardiovascular, promovem inotropismo e cronotropismo positivo cardíaco e relaxamento vascular. Embora os efeitos do exercício tenham sido investigados em receptores cardíacos, estudos focados nos vasos são escassos e controversos. Esta revisão abordará os efeitos do exercício físico sobre os receptores &#946;-adrenérgicos vasculares em modelos animais e humanos e os mecanismos celulares envolvidos na resposta relaxante. Em geral, os estudos mostram resultantes conflitantes, onde observam diminuição, aumento ou nenhum efeito do exercício físico sobre a resposta relaxante. Assim, os efeitos do exercício na sensibilidade &#946;-adrenérgica vascular merecem maior atenção, e os resultados mostram que a área de fisiopatologia vascular é um campo aberto para a descoberta de novos compostos e avanços na prática clínica.<br>Aerobic exercise promotes beneficial effects on the prevention and treatment of diseases such as arterial hypertension, atherosclerosis, venous insufficiency, and peripheral arterial disease. &#946;-adrenergic receptors are present in a variety of cells. In the cardiovascular system, &#946;-adrenergic receptors promote positive inotropic and chronotropic response and vasorelaxation. Although the effect of exercise training has been largely studied in the cardiac tissue, studies focused on the vascular tissue are rare and controversial. This review examines the data from studies using animal and human models to determine the effect of physical exercise on the relaxing response mediated by &#946;-adrenergic receptors as well as the cellular mechanisms involved in this response. Studies have shown reduction, increase, or no effect of physical exercise on the relaxing response mediated by &#946;-adrenergic receptors. Thus, the effects of exercise on the vascular &#946;-adrenergic sensitivity should be more deeply investigated. Furthermore, the physiopathology of the vascular system is an open field for the discovery of new compounds and advances in the clinical practice

    Smoking and Aortic Diseases

    No full text
    corecore