207 research outputs found
Editorial: Carotid body: a new target for rescuing neural control of cardiorespiratory balance in disease.
The carotid body (CB) is in charge of adjusting ventilatory and cardiovascular function during changes in arterial blood gases. Regardless this essential function, the CB has been implicated in the sensing of other physiological signals such as changes in blood flow and glucose levels. More important, malfunction of the CB chemoreceptors has been associated with the progression and deterioration of several disease states such as hypertension, heart failure, renal failure, insulin resistance, diabetes and sleep apnea. Although the mechanisms involved in the alterations of the CB function in pathophysiology are currently under intense research, the development of therapeutic approaches to restore normal CB chemoreflex function remains unsolved. Recent studies showing the effect of CB denervation in pathophysiology have unveiled a key role of these arterial chemoreceptors in the development of autonomic imbalance and respiratory disturbances, and suggest that targeting the CB could represent a novel strategy to improve disease outcome. Unfortunately, classical pharmacotherapy intended to normalize CB function may be hard to establish since several cellular pathways are involved in the CB dysfunction. Augmented levels of angiotensin II, endothelin-1, cytokines and free radicals along with decreases in nitric oxide had all been related to the CB dysfunction. Moreover, changes in expression of angiotensin receptors, nitric oxide synthases and cytokines that take place within the CB tissue in pathological states also contribute to the enhanced CB chemoreflex drive. It has been shown in heart failure, hypertension and obstructive sleep apnea that the CB becomes tonically hyper-reactive. During the progression of the disease this CB chemosensory facilitation process induces central nervous system plasticity. The altered autonomic-respiratory control leads to increased cardiorespiratory distress and the deterioration of the condition. The focus of this e-book will be to cover the role of the CB in pathophysiology and to provide new evidence of the pathways involved in the maladaptive potentiation of the CB chemoreflex function. In memory of Professor Mashiko Shirahata and Professor Constancio Gonzalez
Central role of carotid body chemoreceptors in disordered breathing and cardiorenal dysfunction in chronic heart failure.
Oscillatory breathing (OB) patterns are observed in pre-term infants, patients with cardio-renal impairment, and in otherwise healthy humans exposed to high altitude. Enhanced carotid body (CB) chemoreflex sensitivity is common to all of these populations and is thought to contribute to these abnormal patterns by destabilizing the respiratory control system. OB patterns in chronic heart failure (CHF) patients are associated with greater levels of tonic and chemoreflex-evoked sympathetic nerve activity (SNA), which is associated with greater morbidity and poor prognosis. Enhanced chemoreflex drive may contribute to tonic elevations in SNA by strengthening the relationship between respiratory and sympathetic neural outflow. Elimination of CB afferents in experimental models of CHF has been shown to reduce OB, respiratory-sympathetic coupling, and renal SNA, and to improve autonomic balance in the heart. The CB chemoreceptors may play an important role in progression of CHF by contributing to respiratory instability and OB, which in turn further exacerbates tonic and chemoreflex-evoked increases in SNA to the heart and kidney
The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent
Objective: To investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type (intracloud [IC] vs. cloud-to-ground [CG] ) and extent. Data and Methodology: a) NASA MSFC Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TradeMark) (NLDN) observations following ordinary convective cells through their lifecycle. b) LNOM provides estimates of flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles (Koshak et al. 2012). c) LNOM lightning characteristics are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler (DD) and polarimetric radar analyses of UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR, Cband, polarimetric) and KHTX (S-band, Doppler)
Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide
Angiotensin II (AngII) is the main effector peptide of the renin-angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2 (•-)). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2 (•-). We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2 (•-) scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2 (•-). Using a neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2 (•-) levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2 (•-), and inhibits AngII intra-neuronal signaling
Time-Dependent Alteration in the Chemoreflex Post-Acute Lung Injury
Acute lung injury (ALI) induces inflammation that disrupts the normal alveolar-capillary endothelial barrier which impairs gas exchange to induce hypoxemia that reflexively increases respiration. The neural mechanisms underlying the respiratory dysfunction during ALI are not fully understood. The purpose of this study was to investigate the role of the chemoreflex in mediating abnormal ventilation during acute (early) and recovery (late) stages of ALI. We hypothesized that the increase in respiratory rate (fR) during post-ALI is mediated by a sensitized chemoreflex. ALI was induced in male Sprague-Dawley rats using a single intra-tracheal injection of bleomycin (Bleo: low-dose = 1.25 mg/Kg or high-dose = 2.5 mg/Kg) (day 1) and respiratory variables- fR, Vt (Tidal Volume), and VE (Minute Ventilation) in response to 10% hypoxia (10% O2, 0% CO2) and 5% hypercapnia/21% normoxia (21% O2, 5% CO2) were measured weekly from W0-W4 using whole-body plethysmography (WBP). Our data indicate sensitization (∆fR = 93 ± 31 bpm, p \u3c 0.0001) of the chemoreflex at W1 post-ALI in response to hypoxic/hypercapnic gas challenge in the low-dose bleo (moderate ALI) group and a blunted chemoreflex (∆fR = -0.97 ± 42 bpm, p \u3c 0.0001) at W1 post-ALI in the high-dose bleo (severe ALI) group. During recovery from ALI, at W3-W4, both low-dose and high-dose groups exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia. We then hypothesized that the blunted chemoreflex at W1 post-ALI in the high-dose bleo group could be due to near maximal tonic activation of chemoreceptors, called the ceiling effect . To test this possibility, 90% hyperoxia (90% O2, 0% CO2) was given to bleo treated rats to inhibit the chemoreflex. Our results showed no changes in fR, suggesting absence of the tonic chemoreflex activation in response to hypoxia at W1 post-ALI. These data suggest that during the acute stage of moderate (low-dose bleo) and severe (high-dose bleo) ALI, chemoreflex activity trends to be slightly sensitized and blunted, respectively while it becomes significantly sensitized during the recovery stage. Future studies are required to examine the molecular/cellular mechanisms underlying the time-course changes in chemoreflex sensitivity post-ALI
Commonalities and Differences in Carotid Body Dysfunction in Hypertension and Heart Failure
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically
Relevance of the Carotid Body Chemoreflex in the Progression of Heart Failure.
Chronic heart failure (CHF) is a global health problem affecting millions of people. Autonomic dysfunction and disordered breathing patterns are commonly observed in patients with CHF, and both are strongly related to poor prognosis and high mortality risk. Tonic activation of carotid body (CB) chemoreceptors contributes to sympathoexcitation and disordered breathing patterns in experimental models of CHF. Recent studies show that ablation of the CB chemoreceptors improves autonomic function and breathing control in CHF and improves survival. These exciting findings indicate that alterations in CB function are critical to the progression of CHF. Therefore, better understanding of the physiology of the CB chemoreflex in CHF could lead to improvements in current treatments and clinical management of patients with CHF characterized by high chemosensitivity. Accordingly, the main focus of this brief review is to summarize current knowledge of CB chemoreflex function in different experimental models of CHF and to comment on their potential translation to treatment of human CHF
Hubble Space Telescope Observations of Comet 9P/Tempel 1 during the Deep Impact Encounter
We report on the Hubble Space Telescope program to observe periodic comet
9P/Tempel 1 in conjunction with NASA's Deep Impact mission. Our objectives were
to study the generation and evolution of the coma resulting from the impact and
to obtain wide-band images of the visual outburst generated by the impact. Two
observing campaigns utilizing a total of 17 HST orbits were carried out: the
first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a
new, short-lived fan in the sunward direction on June 14. The principal
campaign began two days before impact and was followed by contiguous orbits
through impact plus several hours and then snapshots one, seven, and twelve
days later. All of the observations were made using the Advanced Camera for
Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a
spatial resolution of 36 km (16 km/pixel) at the comet at the time of impact.
Baseline images of the comet, made prior to impact, photometrically resolved
the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement
with the 6.0 +/- 0.2 km diameter derived from the spacecraft imagers. Following
the impact, the HRC images illustrate the temporal and spatial evolution of the
ejecta cloud and allow for a determination of its expansion velocity
distribution. One day after impact the ejecta cloud had passed out of the
field-of-view of the HRC.Comment: 15 pages, 14 postscript figures. Accepted for publication in Icarus
special issue on Deep Impac
- …