7 research outputs found

    Proteínas das glândulas salivares do Anopheles dirus B (Diptera: Culicidae), vetor da malária humana

    Get PDF
    Salivary gland proteins of the human malaria vector, Anopheles dirus B were determined and analyzed. The amount of salivary gland proteins in mosquitoes aged between 3 - 10 days was approximately 1.08 ± 0.04 µg/female and 0.1 ± 0.05 µg/male. The salivary glands of both sexes displayed the same morphological organization as that of other anopheline mosquitoes. In females, apyrase accumulated in the distal regions, whereas alpha-glucosidase was found in the proximal region of the lateral lobes. This differential distribution of the analyzed enzymes reflects specialization of different regions for sugar and blood feeding. SDS-PAGE analysis revealed that at least seven major proteins were found in the female salivary glands, of which each morphological region contained different major proteins. Similar electrophoretic protein profiles were detected comparing unfed and blood-fed mosquitoes, suggesting that there is no specific protein induced by blood. Two-dimensional polyacrylamide gel analysis showed the most abundant salivary gland protein, with a molecular mass of approximately 35 kilodaltons and an isoelectric point of approximately 4.0. These results provide basic information that would lead to further study on the role of salivary proteins of An. dirus B in disease transmission and hematophagy.Proteínas das glândulas salivares do Anopheles dirus B (Diptera: Culicidae), vetor da malária humana foram determinadas e analisadas. A quantidade de proteínas das glândulas salivares em mosquitos com três a 10 dias de idade foi de aproximadamente 1,08 ± 0,04 µg/ fêmea e de 0,1 ± 0,05 µg/macho. As glândulas salivares de ambos os sexos mostraram organização morfológica semelhante à de outros mosquitos anofelinos. Em fêmeas, apirase acumula-se nas regiões distais, enquanto alfa-glucosidase foi encontrada na região proximal dos lóbulos laterais. Esta distribuição diferencial das enzimas analisadas reflete a especialização de diferentes regiões para alimentação de açucares e sangue. Análise SDS-PAGE revelou que pelo menos sete proteínas foram encontradas nas glândulas salivares de fêmeas, das quais cada região morfológica continha diferentes proteínas principais. Perfis eletroforéticos de proteínas semelhantes foram detectados comparando-se mosquitos não alimentados e alimentados por sangue, sugerindo que não existe proteína específica induzida pelo mesmo. Análise por gel poliacrilamida bi-dimensional mostrou a mais abundante proteína de glândulas salivares com aproximadamente 35 kilodaltons de massa molecular e ponto isoelétrico de aproximadamente 4,0. Estes resultados dão informações básicas que levariam a estudos adicionais sobre o papel das proteínas salivares do An. dirus B na transmissão da doença e hematofagia

    A sensitive core region in the structure of glutathione S-transferases.

    No full text
    A variant form of an Anopheles dirus glutathione S-transferase (GST), designated AdGSTD4-4, possesses a single amino acid change of leucine to arginine (Leu-103-Arg). Although residue 103 is outside of the active site, it has major effects on enzymic properties. To investigate these structural effects, site-directed mutagenesis was used to generate mutants by changing the non-polar leucine to alanine, glutamate, isoleucine, methionine, asparagine, or tyrosine. All of the recombinant GSTs showed approximately the same expression level at 25 degrees C. Several of the mutants lacked glutathione (GSH)-binding affinity but were purified by S-hexyl-GSH-based affinity chromatography. However the protein yields (70-fold lower), as well as the GST activity (100-fold lower), of Leu-103-Tyr and Leu-103-Arg purifications were surprisingly low and precluded the performance of kinetic experiments. Size-exclusion chromatography showed that both GSTs Leu-103-Tyr and Leu-103-Arg formed dimers. Using 1-chloro-2,4-dinitrobenzene (CDNB) and GSH substrates to determine kinetic constants it was demonstrated that the other Leu-103 mutants possessed a greater K (m) towards GSH and a differing K (m) towards CDNB. The V (max) ranged from 44.7 to 87.0 micromol/min per mg (wild-type, 44.7 micromol/min per mg). Substrate-specificity studies showed different selectivity properties for each mutant. The structural residue Leu-103 affects the active site through H-bond and van-der-Waal contacts with six active-site residues in the GSH binding site. Changes in this interior core residue appear to disrupt internal packing, which affects active-site residues as well as residues at the subunit-subunit interface. Finally, the data suggest that Leu-103 is noteworthy as a sensitive residue in the GST structure that modulates enzyme activity as well as stability

    Salivary gland proteins of the human malaria vector, Anopheles dirus B (Diptera Culicidae)

    Get PDF
    Salivary gland proteins of the human malaria vector, Anopheles dirus B were determined and analyzed. The amount of salivary gland proteins in mosquitoes aged between 3--10 days was approximately 1.08 +/- 0.04 microg/female and 0.1 +/- 0.05 microg/male. The salivary glands of both sexes displayed the same morphological organization as that of other anopheline mosquitoes. In females, apyrase accumulated in the distal regions, whereas alpha-glucosidase was found in the proximal region of the lateral lobes. This differential distribution of the analyzed enzymes reflects specialization of different regions for sugar and blood feeding. SDS-PAGE analysis revealed that at least seven major proteins were found in the female salivary glands, of which each morphological region contained different major proteins. Similar electrophoretic protein profiles were detected comparing unfed and blood-fed mosquitoes, suggesting that there is no specific protein induced by blood. Two-dimensional polyacrylamide gel analysis showed the most abundant salivary gland protein, with a molecular mass of approximately 35 kilodaltons and an isoelectric point of approximately 4.0. These results provide basic information that would lead to further study on the role of salivary proteins of An. dirus B in disease transmission and hematophagy
    corecore