205 research outputs found

    Deconvolving molecular signatures of interactions between microbial colonies

    Get PDF
    Motivation: The interactions between microbial colonies through chemical signaling are not well understood. A microbial colony can use different molecules to inhibit or accelerate the growth of other colonies. A better understanding of the molecules involved in these interactions could lead to advancements in health and medicine. Imaging mass spectrometry (IMS) applied to co-cultured microbial communities aims to capture the spatial characteristics of the coloniesโ€™ molecular fingerprints. These data are high-dimensional and require computational analysis methods to interpret

    Fair and Sound Secret Sharing from Homomorphic Time-Lock Puzzles

    Get PDF
    Achieving fairness and soundness in non-simultaneous rational secret sharing schemes has proved to be challenging. On the one hand, soundness can be ensured by providing side information related to the secret as a check, but on the other, this can be used by deviant players to compromise fairness. To overcome this, the idea of incorporating a time delay was suggested in the literature: in particular, time-delay encryption based on memory-bound functions has been put forth as a solution. In this paper, we propose a different approach to achieve such delay, namely using homomorphic time-lock puzzles (HTLPs), introduced at CRYPTO 2019, and construct a fair and sound rational secret sharing scheme in the non-simultaneous setting from HTLPs. HTLPs are used to embed sub-shares of the secret for a predetermined time. This allows to restore fairness of the secret reconstruction phase, despite players having access to information related to the secret which is required to ensure soundness of the scheme. Key to our construction is the fact that the time-lock puzzles are homomorphic so that players can compactly evaluate sub-shares. Without this efficiency improvement, players would have to independently solve each puzzle sent from the other players to obtain a share of the secret, which would be computationally inefficient. We argue that achieving both fairness and soundness in a non-simultaneous scheme using a time delay based on CPU-bound functions rather than memory-bound functions is more cost effective and realistic in relation to the implementation of the construction

    Expression of nuclear retinoid receptors in normal, premalignant and malignant gastric tissues determined by in situ hybridization

    Get PDF
    [[abstract]]Retinoids exhibit multiple functions through interaction with nuclear retinoid receptors and have growth-suppressive activity on gastric cancer cells. To better understand the roles of nuclear retinoid receptors during gastric carcinogenesis, we have used in situ hybridization to investigate expression of retinoic acid receptors (RARs) and retinoid x receptors (RXRs) in premalignant and malignant formalin-fixed paraffin-embedded gastric tissues. Histological sections of eight normal, 17 distal normal and nine gastric cancer tissues were hybridized with non-radioactive RNA probes for subtypes of RAR and RXR. Expression of RARฮฑ, RARฮฒ, RARฮณ, RXRฮฑ and RXRฮฒ was found in most cell types in gastric mucosa tissues from normal individuals as well as in distal normal tissues from cancer patients. Expression of RARฮฑ and RARฮฒ were found in three and seven cancer tissues, respectively, and levels of RXRฮฑ mRNA were significantly decreased in poorly differentiated cancer tissues. Among the five investigated nuclear retinoid receptors, only expression of RARฮฑ mRNA was significantly decreased in intestinal metaplasia, dysplasia and cancer tissues when compared to adjacent normal tissues. In conclusion, normal gastric mucosa expressed both RARs and RXRs, which supports the physiological role of retinoic acid on normal gastric mucosa. The decrease in RARฮฑ expression in premalignant and malignant gastric tissues suggests a significant role of RARฮฑ during gastric carcinogenesis.[[notice]]่ฃœๆญฃๅฎŒ็•ข[[incitationindex]]SC

    The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo

    Get PDF
    Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60โ€“70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNฮณ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections

    Single nucleotide polymorphisms of the APC gene and colorectal cancer risk: a case-control study in Taiwan

    Get PDF
    BACKGROUND: Colorectal cancer (CRC), which has become especially prevalent in developed countries, is currently the third highest cause of cancer mortality in Taiwan. Mutation of the adenomatous polyposis coli (APC) gene, a tumour suppressor, is thought to be an early event in colorectal tumourigenesis. To date, however, no large-scale screening for APC gene variants in Chinese subjects has been performed. The present study was undertaken to identify APC gene variants that are significantly associated with the occurrence of CRC in Taiwanese subjects. METHODS: In order to compare the genotype distribution of variant sites, the full-length APC genes of 74 healthy individuals and 80 CRC patients were sequenced. RESULTS: Among the 154 Taiwanese subjects examined in this study, three new mutations, but no previously reported mutations, were found. One deletion at codon 460 leading to a frameshift and two missense mutations resulting in p.V1125A and p.S1126R substitutions were identified. Additionally, three high risk genotypes associated with three single nucleotide polymorphisms and one low risk genotype at codon 1822 were identified. CONCLUSION: The findings of this case-control study are consistent with the proposal that Taiwanese subjects differ from other subjects with respect to phenotypic presentation of APC and CRC risk

    Induction of Apoptosis Coupled to Endoplasmic Reticulum Stress in Human Prostate Cancer Cells by n-butylidenephthalide

    Get PDF
    BACKGROUND: N-butylidenephthalide (BP) exhibits antitumor effect in a variety of cancer cell lines. The objective of this study was to obtain additional insights into the mechanisms involved in BP induced cell death in human prostate cancer cells. METHODS/PRINCIPAL FINDINGS: Two human prostate cancer cell lines, PC-3 and LNCaP, were treated with BP, and subsequently evaluated for their viability and cell cycle profiles. BP caused cell cycle arrest and cell death in both cell lines. The G0/G1 phase arrest was correlated with increase levels of CDK inhibitors (p16, p21 and p27) and decrease of the checkpoint proteins. To determine the mechanisms of BP-induced growth arrest and cell death in prostate cancer cell lines, we performed a microarray study to identify alterations in gene expression induced by BP in the LNCaP cells. Several BP-induced genes, including the GADD153/CHOP, an endoplasmic reticulum stress (ER stress)-regulated gene, were identified. BP-induced ER stress was evidenced by increased expression of the downstream molecules GRP78/BiP, IRE1-ฮฑ and GADD153/CHOP in both cell lines. Blockage of IRE1-ฮฑ or GADD153/CHOP expression by siRNA significantly reduced BP-induced cell death in LNCaP cells. Furthermore, blockage of JNK1/2 signaling by JNK siRNA resulted in decreased expression of IRE1-ฮฑ and GADD153/CHOP genes, implicating that BP-induced ER stress may be elicited via JNK1/2 signaling in prostate cancer cells. BP also suppressed LNCaP xenograft tumor growth in NOD-SCID mice. It caused 68% reduction in tumor volume after 18 days of treatment. CONCLUSIONS: Our results suggest that BP can cause G0/G1 phase arrest in prostate cancer cells and its cytotoxicity is mediated by ER stress induction. Thus, BP may serve as an anticancer agent by inducing ER stress in prostate cancer

    BluePort: A Platform to Study the Eosinophilic Response of Mice to the Bite of a Vector of Leishmania Parasites, Lutzomyia longipalpis Sand Flies

    Get PDF
    transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose. sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures.Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum

    HypertenGene: extracting key hypertension genes from biomedical literature with position and automatically-generated template features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic factors leading to hypertension have been extensively studied, and large numbers of research papers have been published on the subject. One of hypertension researchers' primary research tasks is to locate key hypertension-related genes in abstracts. However, gathering such information with existing tools is not easy: (1) Searching for articles often returns far too many hits to browse through. (2) The search results do not highlight the hypertension-related genes discovered in the abstract. (3) Even though some text mining services mark up gene names in the abstract, the key genes investigated in a paper are still not distinguished from other genes. To facilitate the information gathering process for hypertension researchers, one solution would be to extract the key hypertension-related genes in each abstract. Three major tasks are involved in the construction of this system: (1) gene and hypertension named entity recognition, (2) section categorization, and (3) gene-hypertension relation extraction.</p> <p>Results</p> <p>We first compare the retrieval performance achieved by individually adding template features and position features to the baseline system. Then, the combination of both is examined. We found that using position features can almost double the original AUC score (0.8140vs.0.4936) of the baseline system. However, adding template features only results in marginal improvement (0.0197). Including both improves AUC to 0.8184, indicating that these two sets of features are complementary, and do not have overlapping effects. We then examine the performance in a different domain--diabetes, and the result shows a satisfactory AUC of 0.83.</p> <p>Conclusion</p> <p>Our approach successfully exploits template features to recognize true hypertension-related gene mentions and position features to distinguish key genes from other related genes. Templates are automatically generated and checked by biologists to minimize labor costs. Our approach integrates the advantages of machine learning models and pattern matching. To the best of our knowledge, this the first systematic study of extracting hypertension-related genes and the first attempt to create a hypertension-gene relation corpus based on the GAD database. Furthermore, our paper proposes and tests novel features for extracting key hypertension genes, such as relative position, section, and template features, which could also be applied to key-gene extraction for other diseases.</p

    Small Molecule Amiloride Modulates Oncogenic RNA Alternative Splicing to Devitalize Human Cancer Cells

    Get PDF
    Alternative splicing involves differential exon selection of a gene transcript to generate mRNA and protein isoforms with structural and functional diversity. Abnormal alternative splicing has been shown to be associated with malignant phenotypes of cancer cells, such as chemo-resistance and invasive activity. Screening small molecules and drugs for modulating RNA splicing in human hepatocellular carcinoma cell line Huh-7, we discovered that amiloride, distinct from four pH-affecting amiloride analogues, could โ€œnormalizeโ€ the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts. Our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF, and decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, and increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulates kinases and up-regulates phosphatases in the signal pathways known to affect splicing factor protein phosphorylation. These amiloride effects of โ€œnormalizedโ€ oncogenic RNA splicing and splicing factor hypo-phosphorylation were both abrogated by pre-treatment with a PP1 inhibitor. Global exon array of amiloride-treated Huh-7 cells detected splicing pattern changes involving 584 exons in 551 gene transcripts, many of which encode proteins playing key roles in ion transport, cellular matrix formation, cytoskeleton remodeling, and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. Other human solid tumor and leukemic cells, but not a few normal cells, showed similar amiloride-altered RNA splicing with devitalized consequence. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of RNA splicing for cancer therapeutics

    Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as Hypertension Susceptibility Genes in Han Chinese with a Genome-Wide Gene-Based Association Study

    Get PDF
    Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to Taiwanese populations, because they were not validated by the two replication studies. Identification of these genes enriches the collection of hypertension susceptibility genes, thereby shedding light on the etiology of hypertension in Han Chinese populations
    • โ€ฆ
    corecore