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Abstract

Motivation: The interactions between microbial colonies through chemical signaling are not well

understood. A microbial colony can use different molecules to inhibit or accelerate the growth of

other colonies. A better understanding of the molecules involved in these interactions could lead to

advancements in health and medicine. Imaging mass spectrometry (IMS) applied to co-cultured

microbial communities aims to capture the spatial characteristics of the colonies’ molecular finger-

prints. These data are high-dimensional and require computational analysis methods to interpret.

Results: Here, we present a dictionary learning method that deconvolves spectra of different mol-

ecules from IMS data. We call this method MOLecular Dictionary Learning (MOLDL). Unlike stand-

ard dictionary learning methods which assume Gaussian-distributed data, our method uses the

Poisson distribution to capture the count nature of the mass spectrometry data. Also, our method

incorporates universally applicable information on common ion types of molecules in MALDI mass

spectrometry. This greatly reduces model parameterization and increases deconvolution accuracy

by eliminating spurious solutions. Moreover, our method leverages the spatial nature of IMS data

by assuming that nearby locations share similar abundances, thus avoiding overfitting to noise.

Tests on simulated datasets show that this method has good performance in recovering molecule

dictionaries. We also tested our method on real data measured on a microbial community com-

posed of two species. We confirmed through follow-up validation experiments that our method re-

covered true and complete signatures of molecules. These results indicate that our method can dis-

cover molecules in IMS data reliably, and hence can help advance the study of interaction of

microbial colonies.

Availability and implementation: The code used in this paper is available at: https://github.com/friz

fealer/IMS_project.

Contact: vjojic@cs.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Background
Microbial metabolites have been of great importance as a source

of clinically relevant bioactive compounds. One microbial colony

may secrete different metabolites, or alter the quantity of certain me-

tabolites when encountering other colonies. Understanding the ef-

fects of co-culturing may provide a means to manipulate metabolite

production. However, few studies have investigated how changes in

microbial community composition shape metabolite production

by its members (Hoefler et al., 2012; Watrous et al., 2012). One

technology useful for such investigations is matrix-assisted laser

desorption/ionization time-of-flight (MALDI-TOF) imaging mass

spectrometry (IMS), or MALDI-IMS. MALDI-IMS has been success-

fully applied to a variety of biological systems over the last decade.

It is a promising tool because it can be used on a wide array of sam-

ple types. In addition, it has ability to provide information about

spatial distribution of molecular species abundances (Alexandrov,

2012). However, the molecular species and their abundances are not

directly measured. Rather, they are reflected in ion counts across

over 104 � 105 mass-charge ratios. Each molecular species may con-

tribute to multiple mass-charge ratio measurements and different
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molecular species may contribute to the same measurement.

An ability to uncover the molecular species and their abundances

from these mass spectra would make MALID-IMS especially useful

in unraveling the mechanisms of interactions in microbial commun-

ities. Due to the complexity of these data, direct inspection is not

practicable. Thus, it is natural to resort to statistical methods to ob-

tain succinct summaries of MALDI-IMS data.

Computational and statistical methods for MALDI-IMS analysis

have been proposed (Alexandrov, 2012; Jones et al., 2012; Kobarg

et al., 2013; Trede et al., 2012). These methods can be divided into

several groups depending on their focus. One group of methods

applies supervised learning, focusing on finding important features

(biomarkers) in the data for purposes of phenotype classification.

Such approaches include use of symbolic discriminant analysis

(Lemaire et al., 2007), Support Vector Machine (Groseclose et al.,

2008), genetic algorithms (Cazares et al., 2009), elastic net (Hong

and Zhang, 2010) and aNN (Rauser et al., 2010). Another group of

methods focuses on segmentation of IMS data with unsupervised

clustering of spectra (Alexandrov et al., 2013a,b).

Our work, in contrast, belongs to a group of methods focusing

on concise data representation. Previous methods in this group used

principal component analysis (PCA) (Leendert et al., 2007; Plas

et al., 2007), independent components analysis (ICA), non-negative

matrix factorization (NNMF) (Siy et al., 2008) and probabilistic la-

tent semantic analysis (pLSA) (Hanselmann et al., 2008). All of

these methods showed good results in decomposing IMS signals into

the components of biological interest. PCA and ICA use negative

values in the decomposition; negative values do not have a natural

interpretation as components of the mass spectrum or abundances

of molecular species. On the other hand, NNMF and pLSA produce

non-negative components. Nevertheless, NNMF uses alternating

least squares aimed at continuous values to decompose a count data

matrix. This approach lacks a generative model and thus its output,

while non-negative, is still not easily interpreted. Finally, pLSA has a

generative model for the data, allowing for a simple interpretation,

but its application has been focused only on modeling an anatomical

area in tissues or other biological meaningful unit that corresponds

to a composition of a large array of different compounds. For ex-

ample, the pLSA implemented in Bruker’s software (ClinProTools

3.0) was used in analyzing a tumor dataset in MALDI-IMS

(Hanselmann et al., 2008; Sören-Oliver and and Klaus Meyer,

2015). The report showed that the method can recover signature

spectra of cell types from the data. However, identification of cell

types can be accomplished using few discriminative spectra. Hence,

this approach is not suitable for fine-grained analysis of the whole

repertoire of microbial metabolites.

In this article, we model IMS data in terms of molecular signa-

tures and abundances of these molecules. By decomposing mass

spectra into contributions from different molecular species, we can

infer directly both novel molecules and their abundances. To accom-

plish this, we propose a Dictionary Learning method, drawing on

work in machine learning (Balasubramanian et al., 2012; Lee et al.,

2006; Maurer et al., 2013; Mehta and Gray, 2013; Olshausen and

Field, 1997). We deem this method Molecular Dictionary Learning

(MOLDL).

The key contributions of our work are outlined next. We intro-

duce the first generative model of IMS data. This model takes into

account the count nature of the data, background information on

the ionization types and the spatial organization of the data.

Recovery of abundances and spectra of molecular species can be

seen as probabilistic inference in our model. For this purpose, we

derived and implemented an efficient bi-convex optimization

algorithm. Crucially, our method does not require users to specify

the number of the molecular species in the sample, as this number is

uncovered automatically. We conducted computational experiments

to demonstrate performance of this method on both synthetic and

real datasets.

1.2 Notation and terminology
We will assume that each spectrum is of length s, and we assume

w�h such spectra are arranged on a grid of width w and height h.

We will use yi;j to denote spectrum measured at location i, j on the

grid, and Y to denote all of those spectra. Note that Y is a tensor of

size s�w� h: To denote measurement of ion counts of ith mass/

charge (m/z) in spectrum y, we will write yi: We will call each loca-

tion on the grid a grid cell.

We will refer to molecules with the same molecular weight and

ionization preferences as a molecular species (note that different

molecules can appear indistinguishable to a measurement technol-

ogy such as mass spectrometry and contribute to the same molecular

species). A measured spectrum can be seen as a linear combination

of spectra of different molecular species. We will organize spectra of

molecular species into a matrix D, referred to as a dictionary, with

each column of D being a single molecular species’ spectrum.

We will assume that dictionary has s columns, hence s different

dictionary spectra. Hence, we will have a capacity to model as many

different molecular species as there are different mass-charge ratios.

However, this is simply an upper bound on the number of molecular

species. We will denote the kth spectrum in the dictionary with dk.

Hence, the ith charge of the kth dictionary element will be a scalar

di;k, an entry in the ith row and kth column. To differentiate between

spectra in a dictionary and spectra in actual experimental data, we

will refer to spectra in the dictionary as dictionary elements.

We will refer to level of contributions from different dictionary

elements as abundances and denote them using w. A vector of abun-

dances w will be of length s, since we can use at most s dictionary

elements. In addition because each position i, j on the grid has its

own set of abundances, we will use W, a tensor of size s�w� h, to

denote the set of all abundances on a grid, and wi;j to denote an

abundance vector belonging to a location i, j. For each location i, j,

there is a offset w0 added in the linear combination of predictors.

Therefore W0 is a matrix of size w�h to denote the set of all offsets

on a grid. We will use 1 to denote a vector of all 1s.

2 Methods

In order to explain our model, we will incrementally approach the

full model by first introducing dictionary construction in Section

2.1, followed by the space independent model in Section 2.2, culmi-

nating in space dependent model in Section 2.3. We show that both

space-dependent and space-independent models give rise to bicon-

vex objectives. We then provide an algorithm that can fit both mod-

els in Section 2.5. We must emphasize here that the inputs of this

algorithm are only the IMS-data Y and a dictionary pattern that is

based on MALDI mechanism and is independent of data. Molecular

species number that is an input of many dimension reduction algo-

rithm is learned automatically by our algorithm.

2.1 Constructing a dictionary non-zero pattern based on

MALDI-IMS’s prior knowledge
Only ionized molecules have signals in mass spectrometry.

Molecules, depending on their characteristics, can be ionized with

positive or negative charge; therefore, mass spectrometry with

Deconvolving molecular signatures of interactions between microbial colonies i143



different charge modes are applied to detect different molecules.

Different molecules have different ionization preferences. Because

MALDI mass spectrometry is a soft ionization technique, molecules

are rarely fragmented; however, numerous ion adducts are possible.

Common ion types of MALDI-TOF in both positive and negative

mode often observed in microbial MALDI-IMS data are listed in

Table 1 (Gross, 2011). Given a putative peak MþH, corresponding

to a molecule of weight M, we can compute other possible peaks for

this molecule by adding the mass differences between different ion-

ization types. We will refer to the set of differences as D. For ex-

ample, a molecule yielding ions MþH with m/z 301.1 in the

positive mode can produce other ions with m/z values of 301:01

þ17:03 (MþNH4), 301:01þ 21:98 (MþNa), . . . , 301:01þ 76:18

(Mþ2 K-H). Hence, given an m/z value for MþH, denoted by r,

we compile a full list of putative peaks as rþ D ¼ frþ djd 2 Dg.
Since an m/z value may come from any of the six ion types listed in

the table (in the positive mode), a dictionary element associated

with a particular MþH ion has six candidate non-zero entries cor-

responding to these peaks (the same idea applies to the negative

mode).

For a given molecular species, a dictionary element is allowed to

have non-zero entries only corresponding to putative peaks arising

due to different ionization types. More precisely, the only non-zero

entries will be Ddsþ0:5ppme;dsþqþ0:5ppme; q 2 sþ D (0.5 ppm accounts

for the measurement error of 60.5 ppm Da m/z). If the m/z values

we infer do not appear in our data, we discard these values (peaks).

We call these non-zero entries in a dictionary a dictionary pattern.

Importantly, this pattern only determines the sparsity of the diction-

ary; all putative non-zeros in the dictionary are still treated as par-

ameters that have to be learned. Consequently, if the data show no

support for a particular molecular species giving rise to an ion type,

the corresponding entry in the dictionary will be zero. An illustra-

tion of such a dictionary and its relationship to theoretical data is

shown in Figure 1a.

A dictionary pattern is constructed based on the prior knowledge

of MALDI-IMS, which is shown in Table 1. Using this pattern

greatly reduces the problem complexity. For a dataset containing n

m/z values, without any dictionary patterns, a general assumption of

it would be that every m/z value could come from one molecular

species, and every molecular species could gathering any of the m/z

values. This assumption leads to a dictionary of dimension Oðn2Þ.
In contrast, using dictionary pattern, we know one molecular species

with molecular weight M only generates the ion types listed in the

Table 1, so the number of parameters in a dictionary reduces to

O(cn), where c is the number of ion types. Therefore, dictionary pat-

terns reduce the chance for overfitting, the number of local minima,

and the running time. We demonstrate the utility of using a diction-

ary pattern in a synthetic experiment.

2.2 Space independent model with poisson noise
In our space independent model, we assume that spectra in neigh-

boring locations on the grid are independent from each other.

Furthermore, once we determine the abundances, w, of different dic-

tionary elements, different entries of spectrum y will be independent

from each other. This is a typical independence assumption used in

dictionary models. Due to the type of the data collected (i.e. non-

negative counts rather than continuous values), we model the data

in each yk as Poisson distributed. Hence, we have

ykjD;w � PoissonðDk;:wþw0Þ:

We note a difference here in comparison to the standard Poisson

regression. Loosely, the Poisson regression can be seen as modeling

log counts. However, we assume that the contributions of ions with

particular m/z from two different compounds add up rather than

multiply to yield the measured counts. Hence, in the generalized lin-

ear model view, we use an identity link function rather than a

logarithm.

We note here that Dk;: is a row of matrix D, and hence not the

same as dk which is a column. This row reflects a proportion of each

molecular species ions that have kth m/z ratio.

Even though the dictionary could have a large number of poten-

tial molecular species, only a subset of ions have non-negligible

counts across all grid cells. Moreover, even smaller set of them are

measured in any one grid cell. Hence, given our assumption of dic-

tionary structure described in Section 2.1, only a subset of dictionary

Table 1. The common ion types and their mass (the row of this

table is sorted by their m/z, and all m/z s listed here are rounded to

the second decimal points) for positive and negative mode

(a) Positive mode

Ionization types m/z

MþH Mþ 1.01

MþNH4 Mþ 18.04

MþNa Mþ 22.99

MþK Mþ 39.10

Mþ 2Na-H Mþ 44.97

Mþ 2K-H Mþ 77.19

(b) Negative Mode

Ionization types m/z

M-H2O-H M-19.02

M-H M-1.01

M-Na-2H Mþ 20.98

MþCl Mþ 34.97

M-K-2H Mþ 37.08

(a) (b) (c)

Fig. 1. The dictionary learning framework for deconvolving molecular signa-

tures from MALDI-IMS data. (a) Our probabilistic model of IMS data utilizes a

dictionary, D, to represent peaks associated with molecular species. Each col-

umn of the dictionary corresponds to a potential molecular species. A spars-

ity pattern in a column reflects prior knowledge of possible ion types. (b) For

our space independent model, we assume abundances of most molecular

species are zero as we do not expect to see every molecular species present

in the sample. A linear combination of molecular species in the dictionary, ac-

cording to their abundances w, gives rise to observed counts, y. (c) In mass-

spec imaging data, spectra are measured on a grid covering the biological

sample of interest. In the illustration, orange and green areas correspond to

two microbial populations. The grid areas covering the same population are

expected to have similar abundances of molecular species. Our space de-

pendent model captures this homogeneity expectation by assuming that

abundances in nearby locations on grid are frequently similar

i144 Y.-C.Harn et al.



elements will be used: those that can produce ions with non-negli-

gible counts. In order to encode this kind of sparsity assumptions,

we introduce an ‘1 penalty or, equivalently, a Laplace prior, on mo-

lecular species abundances. Similarly, we do not assume a priori that

each molecular species will generate each of its putative ion types

and hence place a similar penalty on dictionary entries as well. This

additional penalty is only meaningful for the entries we deemed can-

didate non-zeros, the rest are by definition zero. Hence, we have

wjk � LaplaceðkÞ;Dj/ � Laplaceð/Þ

This model is illustrated in Figure 1b.

2.3 Space dependent model with fusion penalty
It is natural to assume that MALDI-IMS measurements taken at

nearby locations will have very similar abundances of molecular spe-

cies. For an illustration see Figure 1c. One way to introduce this as-

sumption in the model is to penalize differences in parameters at

neighboring locations. In particular, one such penalty is

�
X

i;j;l

hkwi;j
l �wiþ1;j

l jj22 þ hkwi;j
l �wi;jþ1

l jj22:

This sum of squares penalty promotes shrinkage of the differ-

ences of abundances between nearest neighbors. Penalties on the

parameter differences are referred to fusion penalties. Here, we em-

ploy ‘22, or a sum-of-squares penalty, on the differences.

Hence, the penalized objective for the space dependent model is

FLPðW;W0;D; k;/; h; yÞ ¼
X

i;j;k

yi;j
k logfðDk;:w

i;j þw0Þg

�
X

i;j;k

ðDk;:w
i;j
l þwi;j

0 Þ �
X

i;j;k

logfyi;j
k !g

� k
X

i;j;l

jwi;j
l j � /

X

k;m

jdk;mj

�
X

i;j;l

hkwi;j
l �wiþ1;j

l jj22 þ hkwi;j
l �wi;jþ1

l jj22:

This model is illustrated in Figure 1c. MOLDL optimizes the

function FLP by optimizing W given D and optimizing D given W

alternatingly. The details of these two algorithms and the details of

choosing hyperparameters are shown in the Supplementary data.

2.4 Biconvexity of space dependent model’s objective

THEOREM 1:The objective in Equation 2.3 is biconvex in abundances,

W and W0, and dictionary, D.

PROOF: Sketch: To show that the function FLP is bi-convex in

(W;W0) and D, we need to show that the function is convex in

(W;W0) for a fixed D and vice versa. For a fixed D the objective is a

sum of a convex function with an affinely transformed argumentP
i;j;klogfDk;:w

i;jg, a linear functions of w and w0, a convex function

jwi;j
l j and another convex function with an affinely transformed ar-

guments kwi;j
l �wi;jþ1

l jj22. As a sum of convex functions, the function

FLP is convex for a fixed D.

For a fixed ðW;W0Þ, the function FLP has three terms that are

influenced by D. The first term is a convex function with an affinely

transformed argument linear function of D;
P

i;j;klogfDk;:w
i;jg. The

second term is a linear function of D, �ð
P

i;j;k Dk;:w
i;jÞ. The third

term is a convex function jdk;mj. As a sum of convex function, the

function FLP is convex for a fixed W;W0. Hence, the function FLP

is biconvex in abundances and dictionary. h

The statement of biconvexity holds even for h¼0 so fitting the

space independent model is also a biconvex optimization problem.

2.5 Algorithm
Algorithm 1 shows pseudo-code for MOLDL. We initialize z0 as log

ðyþ 1Þ and Dinit can be any matrix which honors the non-zero pat-

tern constructed in Section 2.1. Here, we use NNMF on non-zero

entries for dictionary initialization in real cases. Also, we use

‘updateW-ADMM’ to refer to an implementation of W updates,

outlined earlier. The algorithm iteratively updates W;W0; and D

until the function FLP converges or the change in W and D becomes

smaller than a certain value.

Algorithm 1. Molecular Dictionary Learning

Input: Y;Dinit; k; h;/, loopNum, tol1, tol2

Output: D;W;W0

Wð0Þ ¼ 0; W
ð0Þ
0 ¼ 0; Dð0Þ ¼ Dinit;

z
ð0Þ
0 ¼ fyþ 1g;

prevLp¼�inf; lp¼FLPðWð0Þ;W
ð0Þ
0 ;Dð0Þ; k; h;/; yÞ;

for i¼1; i < loopNum; iþþ do

WðiÞ;W
ðiÞ
0 ¼

updateW�ADMM ðDði�1Þ;Wði�1Þ;W
ði�1Þ
0 ;

z
ði�1Þ
0 ; z

ði�1Þ
1 ; z

ði�1Þ
2 ; k; h; yÞ;

DðiÞ ¼ argmaxDFLPðWðiÞ;W
ðiÞ
0 ;D

ði�1Þ;/; yÞ;
if jlp� prevLpj < tol1 or

ðmaxðWðiÞ �Wði�1ÞÞ < tol2 and

maxðDðiÞ �Dði�1ÞÞ < tol2Þ then

break;

end

prevlp¼ lp; lp¼FLPðWðiÞ;W
ðiÞ
0 ;D

ðiÞ; k; h;/; yÞ;
end

3 Results

We ran our method on three synthetic datasets to show its perform-

ance. MOLDL was then applied to two real datasets and evaluated

based on its ability to recover dictionary elements corresponding to

known molecular species in the sample.

3.1 Synthetic data results
We present three synthetic experiments with different purposes.

Because the ground truth dictionaries of these experiments are

known, we quantify performance of our and other’s methods in

terms of dictionary recovery. Here, we use an entry-by-entry com-

parison and cross-dictionary coherence as indices of the recovery. If

a dictionary size is small, we can compare the ground truth diction-

ary and the dictionary learned by computational methods entry-by-

entry. If the dictionary size is large, we use cosine similarity to com-

pute agreement between pairs of dictionary elements. For a ground

truth dictionary element dm, and a learned dictionary element ~dm ,

we will refer to a pair of dictionary elements with the same index as

matched. For example, if dm and ~dm are matched, all other pairs are

mismatched. The cosine similarity of the two ~dm ; ~dm vectors is com-

puted as cosðdm; ~dm Þ ¼ dm � ~dm

kdmk k ~dm k
: Hence, given two dictionaries, D,

and ~D we can compute a cosine similarity matrix ci;j ¼ cosðdi; ~dj Þ.
We note that cosine similarity matrix between a non-negative dic-

tionary and itself may not be a diagonal matrix.

A reconstructed dictionary might contain the same elements as

the ground truth dictionary, but in a different order. To obtain
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optimal matching between elements of dictionaries, we run the

Hungarian algorithm (Kuhn, 1955) on the negative of the cosine

similarity matrix. This ordering has the benefit of maximizing over-

all cosine similarity between matched dictionary elements.

3.2 Synthetic experiment 1: the advantage of using a

dictionary pattern
A dictionary pattern can help recover the dictionary more accurately

by reducing the chance of learning false positive entries in the dic-

tionary. To show this statement is true, we compared the recovered

dictionaries from our method with and without a dictionary pattern.

In the first synthetic experiment, we made a ground truth dictionary

that has the dictionary pattern ½1 1 0; 0 1 1; 1 0 0�. One means entries

have values and zero means entries do not have values. As defined, a

dictionary pattern only decides the sparsity of the dictionary; there-

fore, the values of these non-zero entries are still undecided. To

make the simulation simpler, we set the values of each entries to be

the same. And because the constraint on a dictionary element is to

have its L2-square value equal to one, the values of the ground truth

dictionary entries were ½0:707 0:707 0; 0 0:707 0:707; 1 0 0�
(0:7072 þ 0:7072 � 1). This dictionary has three molecular species,

with the first two elements have at most two possible values that are

non-zeros, and the third element has at most one possible value. The

values of W were generated by taking absolute values of the sample

from a normal distribution (l ¼ 0;r ¼ 10). The sample size (width

times height) is 20�20; the W is a tensor of the size 3� 20� 20.

The result in Figure 2 shows that the dictionary learning without

the pattern learned one false positive value in entries 6 (the yellow

bars) and two false negative values in entries 3 and 5. Also, using

the pattern makes it easier for the algorithm to converge: MOLDL

with the pattern took 11 iterations to converge, while without the

pattern it took 21 iterations. Our argument is that even if the ground

truth dictionary is simple and the sample size is relatively large con-

sidering the variables to be learned, it is still possible that dictionary

learning recovers a dictionary with false entries. Hence using the dic-

tionary patterns improves both speed and accuracy of the method.

3.3 Synthetic experiment 2: deconvolution of molecular

species
In the second synthetic experiment, we addressed a situation where

multiple molecules contribute to the same peak in the spectra and

their abundances are diffused across the sample in 2D space, and we

compared the results of different computational methods in this situ-

ation. In this experiment, we set a ground truth dictionary as a

three-by-three matrix, with the first, second, third column being

½0:89; 0:45;0�; ½0; 0:89; 0:45�; ½0:89;0;0:45�, respectively. Thus each

of the three molecular species shares peaks with the other two. A

ground truth abundances were generated as follows: a location on

the grid for a particular molecular species was chosen and diffusion

of its abundance was performed. The diffusion was emulated using

a mean filtering kernel of size 3�3 iterated 10 times. This is to

simulate the real case of microbial secretion that would lead the

abundances of nearby locations to be similar. The ground truth

abundance is a 3� 20� 20 tensor. The computational methods we

compared our method to are NNMF and pLSA, and we set the vari-

able numbers (molecular species number) for all methods to 3.

The result is shown in Figure 3. Our method (MOLDL, the light-

blue bars) decomposed dictionary elements correctly. Both NNMF

(the yellow bars) and pLSA (the red bars) were unable to recover

dictionary elements correctly in this simulation. Note that in this ex-

periment there is no sparsity penalty on either abundances or

dictionary.

3.4 Synthetic experiment 3: dictionary recovery

evaluation
In the third synthetic experiment, we simulated a larger dataset

using a ground truth dictionary with 38 m/z values and 20 molecular

species. To simulate the dictionary pattern used in the real data, we

generated this dictionary pattern by extracting part of the pattern

from the pattern generated in Section 2.1. We extracted the first 20

dictionary elements; there are 38 different values for their respective

m/z values. To simulate the real case that not all locations (sample

grids) contain all molecular species, we made W in some locations

zero, so different molecular species existed in different locations of

the synthetic sample. The ground truth abundance is a 20� 30� 30

tensor. We generated ground truth W according to the method used

in synthetic experiment 2. For ground truth D, while we assume that

non-zero pattern is known, the values of actual entries in the dic-

tionaries need to be learned. In our experiments, we generated those

by taking the absolute value of the sample from a normal
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Fig. 2. The entry-by-entry comparison of the ground truth dictionary (the

dark-blue bars), MOLDL with the pattern (MOLDL with p, the light-blue bars),
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distribution. The computational methods we compared are NNMF

and pLSA. All hyperparameters in MOLDL were learned by held-

out validation mentioned in the Supplementary data. MOLDL

learned the molecular number automatically by the hyperparameter

k. We set both NNMF and pLSA’s molecular number to 20. This

comparison result is shown in the Supplementary data.

To make pLSA and NNMF more comparable to our algorithm,

we added sparsity constraints on pLSA (sparse-pLSA) and NNMF

(sparse-NNMF) according to the algorithms of Li and Ngom

(2013)and Liu et al. (2010). We used ‘1 regularization on abun-

dances in both algorithms.

In the Figure 4, we compared the learned dictionaries from each

method to the ground truth dictionary. First, learned dictionary

elements were matched by the Hungarian algorithm, then we com-

puted the cosine similarity for all element pairs from the learned dic-

tionary and the ground truth dictionary. We divided these

similarities into a matched dictionary elements group and a mis-

matched dictionary element group and computed a histogram with

bin size equal to 100 for both groups. This histogram was then nor-

malized because the number of true dictionary elements and the

number of false ones were different. We also show in Figure 4A the

comparison of the ground truth dictionary to itself as a reference.

As we see in Figure 4A all true dictionary elements have a cosine

similarity of 1, the maximum value. In Figure 4A, some mismatched

dictionary elements have high cosine similarity because these elem-

ents are very similar. These give rise to the bars with small heights in

Figure 4A because the abundances of them are few. In Figure 4B and

C, the comparisons of the results of sparse-NNMF and sparse-pLSA

are shown. For sparse-NNMF and sparse-pLSA �20% of the

matched dictionary elements’ cosine similarities lie in the bin of 1,

and the cosine similarities, as a whole, lie in a broad range, from 0.2

to 1. However, there are also �10% of the matched dictionary elem-

ents’ cosine similarities that lie in the bin of 0.4 in both algorithms

and 10% of the matched dictionary elements’ cosine similarities that

lie in the bin of 0.2 in sparse-NNMF. In contrast, MOLDL per-

formed better: there are �95% of the matched dictionary elements’

cosine similarities larger then 0.5 and 80% of their cosine similar-

ities larger then 0.8 (shown in Fig. 4D). One matched dictionary

elements’ cosine similarity is low (0.3) because this element is similar

to other elements in this synthetic experiment. So the contributions

of this element to the signals are learned as the contributions come

from the other elements. In MOLDL, there are 5% of the matched

dictionary elements that have their cosine similarities below 0.5;

while using sparse-NNMF and sparse-pLSA methods there are

47%.

In terms of the mismatched dictionary elements, their distribu-

tion in MOLDL is similar to that of the ground truth dictionary

(Fig. 4A). In contrast, there are some mismatched dictionary elem-

ents with large cosine similarities in sparse-NNMF and sparse-

pLSA. This synthetic experiment shows the performance of sparse-

NNMF and sparse-pLSA is more vulnerable to noise while MOLDL

offers more robust performance.

3.5 Real data results
Strains and Media Preparation. Bacillus cereus ATCC14579 and

Bacillus subtilis NCIB 3610 were resuspended into Luria Broth from

growth on agar plates, and resuspended to an OD600 of 0.5 One ll

of these cell suspensions were then spotted onto 10 ml agar plates

(0.1X Luria Broth, Lennox: 10 g tryptone, 5 g yeast extract, 5 g

NaCl and 15 g Bacto-agar per L). Four bacterial spots (two of each

bacterial species) were put onto the agar plates in a line, with the

two spots of the same species next to each other at a 1 cm distance,

and the spots of the different bacterial species 0.5 cm away from

each other. Colonies were grown at 30�C for 12 or 40 hr before

being harvested for MALDI-TOF imaging.

MALDI-IMS Sample Preparation. Agar-grown microbial sam-

ples were prepared for MALDI as described in Yang et al. (2012).

Briefly, rectangular regions of agar containing the bacterial co-cul-

tures and the distal control colonies were excised from the agar

plate, placed onto a MALDI-TOF ground steel target plate (Bruker

part no. 224990) and covered with Universal MALDI matrix

(Sigma, Fluka 50149) using a 53 lm stainless steel sieve

(Hogentogler & Co, part 1312). After matrix application, the sam-

ple was dried overnight at 37�C. Excess matrix was physically

removed to clean the plate, and a peptide calibration standard was

spotted onto it (Bruker part no. 206195, Pepmix4).

MALDI-IMS Experiment Protocol. After mass calibration using

the Pepmix standard, samples were imaged using a MALDI-TOF

mass spectrometer (Microflex LRF, Bruker) with a Microscout ion

source (Nitrogen UV laser, k¼337 nm) in both linear positive and lin-

ear negative mode. FlexControl and FlexImaging software (Bruker)

was used for image acquisition with 80 shots averaged from each pixel

of 400 to 800 lm across across an m/z of 0 to 5000Da.

Preprocessing of the Raw Data. The raw data was preprocessed

by first converting the Bruker file into the mzML format with

msconvert (Chambers et al., 2012). We emphasize here that there

was no preprocessing done by manufacturer’s software in this step.

Then the mzML format was processed with the R package for

MALDI-MS data processing (Gibb and Strimmer, 2012), and the

peak picking was done with another R package (Du et al., 2006).

The data here is still count data because the peak picking algorithm

is choosing a subset of m/z channels and there are no values changes

in the input data. For a grid cell without a particular peak, we ex-

tracted the value from the original spectrum data, so there is no

zero-inflation. In order to cope with the measurement error, we

binned the peaks and chose the maximum value in a bin to represent

that bin. This resulted in a tensor (data cube) of size 496� 38� 59

for positive mode data, and of size 88� 38� 60 for negative mode

data. Further details on the preprocessing are given in the

Supplementary data.

MOLDL on the Real Data. We constructed the dictionary pat-

terns in both modes according to Section 2.1, except we chose a sub-

set of the elements that had supports in the preprocessed data. We

0 0.2 0.4 0.6 0.8 1
0

0.5

1

cosine similarity

p
er

ce
n

ta
g

e

A)

 

 

true dictionary elements
false dictionary elements

0 0.2 0.4 0.6 0.8 1
0

0.5

1

cosine similarity

p
er

ce
n

ta
g

e

B)

 

 

true dictionary elements
false dictionary elements

0 0.2 0.4 0.6 0.8 1
0

0.5

1

cosine similarity

p
er

ce
n

ta
g

e

C)

 

 

true dictionary elements
false dictionary elements

0 0.2 0.4 0.6 0.8 1
0

0.5

1

cosine similarity

p
er

ce
n

ta
g

e

D)

 

 

true dictionary elements
false dictionary elements

Fig. 4. The cosine distribution of the true dictionary elements and false dic-

tionary elements for each pair of methods comparison. (A) ground truth dic-

tionary compared to itself. (B) The dictionary came from sparse-pLSA

compared with the ground truth dictionary. (C) The dictionary came from
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also removed elements that have unreasonable composition in terms

of ion types, e.g. an element with just one ion form [Mþ2Na-H]

was removed. This results in a dictionary pattern of size 88�108 in

the negative mode and of size 496�753 in the positive mode. We

initialized the dictionary with NNMF and initialized W;W0 to zero.

Previous research on the microbe B. subtilis (Hoefler et al., 2012;

Watrous et al., 2012) showed that it produces the molecule surfac-

tin, and that surfactin is visible in MALDI-IMS data. Surfactin is a

bacterial cyclic lipopeptide whose molecular weight is 1008.3 (cor-

responding to C13 type, Hoefler et al., 2012). Surfactin molecules

include a hydrophobic acyl chain of varied length with C13, C14,

C15 forms predominant (Atsushi et al., 1969; Bonmatin et al.,

1994). Hence, we expect to see different forms of surfactin in our

samples as previous studies have shown (Hoefler et al., 2012;

Watrous et al., 2012). To prove that we could captured all the peaks

associated with a particular form of surfactin in a single dictionary

element, experiments with purified surfactin were done using both

positive and negative mode.

Note that the purified surfactin consists of different isoforms of

surfactins. Though these forms are all called surfactin due to their

similar chemical structures, they are considered different in our

modeling because different bacterial strains may secrete different

composition of isoforms. As our goal is to decompose the secreted

compounds under different bacterial strains’ interactions, different

isoforms of surfactin should be modeled as different compounds. To

distinguish between different forms of surfactin, we called surfactin

with C13, C14 and C15 acyl chain surfactin-C13, surfactin-C14

and surfactin-C15.

To make a comparison between the computational methods on

real datasets (in both positive and negative ionization modes), we

applied the same preprocessing steps to the surfactin MALDI data

as we used on MALDI-IMS data. We identified each m/z signal in

surfactin-C13, surfactin-C14 and surfactin-C15 isoforms for each of

the different ion types shown in Table 1. We then normalized the m/

z signals in the spectra as we normalized the dictionary elements in

our method. We compared the purified surfactin dictionary

signatures and their counterparts from MOLDL, sparse-pLSA and

sparse-NNMF. To find the matched elements in sparse-NNMF and

sparse-pLSA, we used the Hungarian algorithm mentioned before to

find the element that has the largest cosine similarity to the surfactin

dictionary element. In MOLDL, since every element’s construction

is based on the ion types, one can deduce the underlying molecular

weight giving rise to these ion types. For the matched elements, we

first removed the entries with intensities lower then 1% as we

deemed them as noise. Then we kept the five largest-intensity entries

in the elements. We aggregated all these entries of the elements for

different isoforms of surfactin and the different computational meth-

ods. Surfactin-C14 and surfactin-C15 are shown in Figures 5 and 6,

respectively. Among the surfactin forms, these molecules have the

most complex ion types. Hence, these molecules provide best illus-

tration of the power of our method.

In both experiments, compared with the other methods, the out-

put of MOLDL had the largest cosine similarity with the purified

surfactin spectra. In the negative mode, MOLDL learned a diction-

ary element consisting of only two entries, thus capturing all the

peaks of surfactin-C14 (true positive) without introducing any false

positives. Moreover, compared with the other computational meth-

ods, the relative intensities of the true positive entries from MOLDL

has the smallest ‘1 distance from those from purified surfactin. On

the other hand, sparse-NNMF and sparse-pLSA captured the signal

of m/z 1021.3, but with lower relative intensity. Moreover, they

were almost unable to capture the signal of m/z 1057.5. Therefore,

in terms of recovery of the molecular signatures in this experiments,

MOLDL performed better than other methods both quantitatively

and qualitatively. Both sparse-NNMF and sparse-pLSA, although

they were made more robust through the use of the ‘1 penalty, are

still very sensitive to noise. The entries they learned are more likely

to be spurious because their m/z differences do not correspond to

well-known ion types. We emphasize here that by using the diction-

ary patterns composed of possible ion types and sparsitiy regulariza-

tion, MOLDL not only reduces the false positive significantly

compared with other methods, but also that the signals that might
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appear as false positives may indeed be real ions with a biochemical

hypothesis behind them.

In the positive mode, MOLDL, sparse-NNMF and sparse-pLSA

all learned four true positives. But sparse-NNMF and sparse-pLSA

also learned four false positives. In terms of false positives, MOLDL

performed better than other methods. Also the relative intensities of

the true positive entries from MOLDL has the smallest ‘1 distance

from those from purified surfaction compared to the other computa-

tional methods. The results for other surfactin molecules are shown

in the Supplementary data. In these cases, MOLDL performed better

then sparse-NNMF and sparse-pLSA by having less false positive

signal, and by recovering more accurate relative intensities of the

dictionary element entries.

Note that the relative intensities of some entries in the dictionary

element are less accurate. One reason might be due to poor initial-

ization such that MOLDL took more iterations to converge. The se-

cond reason might be we did not consider isotopic surfactin

molecules: they are one or two molecular weight difference and al-

ways appear together in the same sample (Pathak and Keharia,

2014). When considering different forms of surfactins, the ion type

of an isotopic surfactin variant might have similar molecular weight

of the ion type of another form of surfactin. For example, if a iso-

topic surfactin-C14 has the molecular weight 1024, it has a signal in

1047.29 m/z ([MþNa]) that is within the error range of the m/z

value of ion type [MþK] of surfactin-C13. As we did not group the

signal of isotopic surfactin-C14 into a dictionary element, it is pos-

sible that it was included in another element that made the

deconvolution of signals inaccurate. The third reason might be the

modeling of MALDI-IMS data is not accurate, due to distributional

assumptions such as Gaussian or Poisson noise. One possible

distribution choice that might lead to better results is negative-

binomial. Compared with pLSA and NNMF, the framework of dic-

tionary learning makes it easier to incorporate distributions other

then the Gaussian distribution into the modeling of MALDI-IMS

data, allowing this to be tested easily in future iterations of the

method.

In the results section, we compared all the state-of-the-art

computational methods of deconvolving MALDI-IMS data on syn-

thetic examples and real datasets. MOLDL performed better then

other methods both in true positive and true negative rate. It can

learn the most complete molecular signature of a molecular species.

Also, based on the dictionary pattern used, MOLDL can learn the

signatures corresponding to molecules based on biochemical know-

ledge, which other methods cannot. Third, with the framework of

dictionary learning, MOLDL is extensible to other distributions.

Our future work will be based on this framework to improve

learning the relative intensities in the dictionary elements more

accurately.

4 Conclusion

In this article, we present MOLDL, a Dictionary Learning method,

aimed at summarizing MALDI-IMS data. This method deconvolves

m/z signals into components that belong to different molecular spe-

cies. Our method models the data as Poisson distributed, incorpor-

ates the possible ion types of MALDI mass spectrometry, leverages

the spatial dependency of IMS data, and can learn the number of

molecular species present in the MALDI-IMS data automatically.

We implemented this method and develop a straightforward method

for choosing its hyperparameters. We tested it on three synthetic

and two real experimental datasets, and showed that, compared

with prior approaches, our method provides superior recovery of

molecular signatures.
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