5,013 research outputs found
Perturbations in the Kerr-Newman Dilatonic Black Hole Background: I. Maxwell waves
In this paper we analyze the perturbations of the Kerr-Newman dilatonic black
hole background. For this purpose we perform a double expansion in both the
background electric charge and the wave parameters of the relevant quantities
in the Newman-Penrose formalism. We then display the gravitational, dilatonic
and electromagnetic equations, which reproduce the static solution (at zero
order in the wave parameter) and the corresponding wave equations in the Kerr
background (at first order in the wave parameter and zero order in the electric
charge). At higher orders in the electric charge one encounters corrections to
the propagations of waves induced by the presence of a non-vanishing dilaton.
An explicit computation is carried out for the electromagnetic waves up to the
asymptotic form of the Maxwell field perturbations produced by the interaction
with dilatonic waves. A simple physical model is proposed which could make
these perturbations relevant to the detection of radiation coming from the
region of space near a black hole.Comment: RevTeX, 36 pages in preprint style, 1 figure posted as a separate PS
file, submitted to Phys. Rev.
BBO and the Neutron-Star-Binary Subtraction Problem
The Big Bang Observer (BBO) is a proposed space-based gravitational-wave (GW)
mission designed primarily to search for an inflation-generated GW background
in the frequency range 0.1-1 Hz. The major astrophysical foreground in this
range is gravitational radiation from inspiraling compact binaries. This
foreground is expected to be much larger than the inflation-generated
background, so to accomplish its main goal, BBO must be sensitive enough to
identify and subtract out practically all such binaries in the observable
universe. It is somewhat subtle to decide whether BBO's current baseline design
is sufficiently sensitive for this task, since, at least initially, the
dominant noise source impeding identification of any one binary is confusion
noise from all the others. Here we present a self-consistent scheme for
deciding whether BBO's baseline design is indeed adequate for subtracting out
the binary foreground. We conclude that the current baseline should be
sufficient. However if BBO's instrumental sensitivity were degraded by a factor
2-4, it could no longer perform its main mission. It is impossible to perfectly
subtract out each of the binary inspiral waveforms, so an important question is
how to deal with the "residual" errors in the post-subtraction data stream. We
sketch a strategy of "projecting out" these residual errors, at the cost of
some effective bandwidth. We also provide estimates of the sizes of various
post-Newtonian effects in the inspiral waveforms that must be accounted for in
the BBO analysis.Comment: corrects some errors in figure captions that are present in the
published versio
Ghost Busting: PT-Symmetric Interpretation of the Lee Model
The Lee model was introduced in the 1950s as an elementary quantum field
theory in which mass, wave function, and charge renormalization could be
carried out exactly. In early studies of this model it was found that there is
a critical value of g^2, the square of the renormalized coupling constant,
above which g_0^2, the square of the unrenormalized coupling constant, is
negative. Thus, for g^2 larger than this critical value, the Hamiltonian of the
Lee model becomes non-Hermitian. It was also discovered that in this
non-Hermitian regime a new state appears whose norm is negative. This state is
called a ghost state. It has always been assumed that in this ghost regime the
Lee model is an unacceptable quantum theory because unitarity appears to be
violated. However, in this regime while the Hamiltonian is not Hermitian, it
does possess PT symmetry. It has recently been discovered that a non-Hermitian
Hamiltonian having PT symmetry may define a quantum theory that is unitary. The
proof of unitarity requires the construction of a new time-independent operator
called C. In terms of C one can define a new inner product with respect to
which the norms of the states in the Hilbert space are positive. Furthermore,
it has been shown that time evolution in such a theory is unitary. In this
paper the C operator for the Lee model in the ghost regime is constructed
exactly in the V/N-theta sector. It is then shown that the ghost state has a
positive norm and that the Lee model is an acceptable unitary quantum field
theory for all values of g^2.Comment: 20 pages, 9 figure
Theoretical survey of tidal-charged black holes at the LHC
We analyse a family of brane-world black holes which solve the effective
four-dimensional Einstein equations for a wide range of parameters related to
the unknown bulk/brane physics. We first constrain the parameters using known
experimental bounds and, for the allowed cases, perform a numerical analysis of
their time evolution, which includes accretion through the Earth. The study is
aimed at predicting the typical behavior one can expect if such black holes
were produced at the LHC. Most notably, we find that, under no circumstances,
would the black holes reach the (hazardous) regime of Bondi accretion.
Nonetheless, the possibility remains that black holes live long enough to
escape from the accelerator (and even from the Earth's gravitational field) and
result in missing energy from the detectors.Comment: RevTeX4, 12 pages, 4 figures, 5 tables, minor changes to match the
accepted version in JHE
Squeezed Light for the Interferometric Detection of High Frequency Gravitational Waves
The quantum noise of the light field is a fundamental noise source in
interferometric gravitational wave detectors. Injected squeezed light is
capable of reducing the quantum noise contribution to the detector noise floor
to values that surpass the so-called Standard-Quantum-Limit (SQL). In
particular, squeezed light is useful for the detection of gravitational waves
at high frequencies where interferometers are typically shot-noise limited,
although the SQL might not be beaten in this case. We theoretically analyze the
quantum noise of the signal-recycled laser interferometric gravitational-wave
detector GEO600 with additional input and output optics, namely
frequency-dependent squeezing of the vacuum state of light entering the dark
port and frequency-dependent homodyne detection. We focus on the frequency
range between 1 kHz and 10 kHz, where, although signal recycled, the detector
is still shot-noise limited. It is found that the GEO600 detector with present
design parameters will benefit from frequency dependent squeezed light.
Assuming a squeezing strength of -6 dB in quantum noise variance, the
interferometer will become thermal noise limited up to 4 kHz without further
reduction of bandwidth. At higher frequencies the linear noise spectral density
of GEO600 will still be dominated by shot-noise and improved by a factor of
10^{6dB/20dB}~2 according to the squeezing strength assumed. The interferometer
might reach a strain sensitivity of 6x10^{-23} above 1 kHz (tunable) with a
bandwidth of around 350 Hz. We propose a scheme to implement the desired
frequency dependent squeezing by introducing an additional optical component to
GEO600s signal-recycling cavity.Comment: Presentation at AMALDI Conference 2003 in Pis
A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins
Microcanonical statistics of black holes and bootstrap condition
The microcanonical statistics of the Schwarzschild black holes as well as the
Reissner-Nordstrm black holes are analyzed. In both cases we set
up the inequalities in the microcanonical density of states.
These are then used to show that the most probable configuration in the gases
of black holes is that one black hole acquires all of the mass and all of the
charge at high energy limit. Thus the black holes obey the statistical
bootstrap condition and, in contrast to the other investigation, we see that
U(1) charge does not break the bootstrap property.Comment: 16 pages. late
- âŠ