106 research outputs found

    Professionalism, Golf Coaching and a Master of Science Degree: A commentary

    Get PDF
    As a point of reference I congratulate Simon Jenkins on tackling the issue of professionalism in coaching. As he points out coaching is not a profession, but this does not mean that coaching would not benefit from going through a professionalization process. As things stand I find that the stimulus article unpacks some critically important issues of professionalism, broadly within the context of golf coaching. However, I am not sure enough is made of understanding what professional (golf) coaching actually is nor how the development of a professional golf coach can be facilitated by a Master of Science Degree (M.Sc.). I will focus my commentary on these two issues

    Establishment and dynamics of the balsam fir seedling bank in old forests of northeastern Quebec

    Get PDF
    This study examines balsam fir (Abies balsamea (L.) Mill.) recruitment in old fir stands. Studying the regeneration of these stands is essential to understand the regeneration dynamic of the species in the absence of standdestroying disturbances. The objectives were (1) to obtain substrate-seedling associations for different age-classes and according to the presence or absence of adventitious roots; (2) to evaluate the contribution of the seed rain to seedling recruitment; (3) to re-examine age structures using the most appropriate method that minimizes estimation errors due to the presence of adventitious roots. A total of 90 quadrats (1 m2) were established along transects. In each quadrat, subtrates were characterized (type and topography) and their area was estimated. All balsam fir seedlings (<50 cm tall) present in the quadrats were located, harvested whole (root and shoot), and described (age, height, presence of adventitious roots, etc). Fir seedlings were strongly associated with woody mounds covered with thin mats of mixed mosses and Pleurozium shreberi (Bird.) Mitt. but negatively associated with flat topography particularly dominated by Hylocomium splendens (Hedw.) B.S.G. The presence of adventitious root is related to seedling age more than substrate type or topography. The age structure is in agreement with seed production and disturbance regime

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have a long history together in the standard cosmology. The general concordance between the predicted and observed light element abundances provides a direct probe of the universal baryon density. Recent CMB anisotropy measurements, particularly the observations performed by the WMAP satellite, examine this concordance by independently measuring the cosmic baryon density. Key to this test of concordance is a quantitative understanding of the uncertainties in the BBN light element abundance predictions. These uncertainties are dominated by systematic errors in nuclear cross sections. We critically analyze the cross section data, producing representations that describe this data and its uncertainties, taking into account the correlations among data, and explicitly treating the systematic errors between data sets. Using these updated nuclear inputs, we compute the new BBN abundance predictions, and quantitatively examine their concordance with observations. Depending on what deuterium observations are adopted, one gets the following constraints on the baryon density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at 68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and lithium observations limit the confidence constraints based on this data provide. With new nuclear cross section data, light element abundance observations and the ever increasing resolution of the CMB anisotropy, tighter constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes to text and reference

    Predictors for abnormal voiding cystourethrography in pediatric patients undergoing renal transplant evaluation

    No full text
    10.1034/j.1399-3046.2001.005002099.xPediatric Transplantation5299-104PETR

    Collaboration and lean manufacturing

    No full text

    Worldwide distribution of soil dielectric and thermal properties

    No full text
    Ground penetrating radar and thermal sensors hold much promise for the detection of non-metallic land mines. In previous work we have shown that the performance of ground penetrating radar strongly depends on field soil conditions such as texture, water content, and soil-water salinity since these soil parameters determine the dielectric soil properties. From soil physics and field measurements we know that the performance of thermal sensors also strongly depends on soil texture and water content. There is it critical that field soil conditions are taken into account when radar and thermal sensors are employed. The objectives of this contribution are (i) to make an inventory of readily available soil data bases world wide and (ii) to investigate how the information contained in these data bases can be used for derivation of soil dielectric and thermal properties relevant for operation of land mine sensors
    corecore