145 research outputs found

    For which side the bell tolls: The laterality of approach-avoidance associative networks

    Get PDF
    The two hemispheres of the brain appear to play different roles in emotion and/or motivation. A great deal of previous research has examined the valence hypothesis (left hemisphere = positive; right = negative), but an increasing body of work has supported the motivational hypothesis (left hemisphere = approach; right = avoidance) as an alternative. The present investigation (N = 117) sought to provide novel support for the latter perspective. Left versus right hemispheres were briefly activated by neutral lateralized auditory primes. Subsequently, participants categorized approach versus avoidance words as quickly and accurately as possible. Performance in the task revealed that approach-related thoughts were more accessible following left-hemispheric activation, whereas avoidance-related thoughts were more accessible following right-hemispheric activation. The present results are the first to examine such lateralized differences in accessible motivational thoughts, which may underlie more “downstream” manifestations of approach and avoidance motivation such as judgments, decision making, and behavior

    Multiple Measures Reveal Antiretroviral Adherence Successes and Challenges in HIV-Infected Ugandan Children

    Get PDF
    Background: Adherence to HIV antiretroviral therapy (ART) among children in developing settings is poorly understood. Methodology/Principal Findings: To understand the level, distribution, and correlates of ART adherence behavior, we prospectively determined monthly ART adherence through multiple measures and six-monthly HIV RNA levels among 121 Ugandan children aged 2–10 years for one year. Median adherence levels were 100% by three-day recall, 97.4% by 30-day visual analog scale, 97.3% by unannounced pill count/liquid formulation weights, and 96.3% by medication event monitors (MEMS). Interruptions in MEMS adherence of \geq48 hours were seen in 57.0% of children; 36.3% had detectable HIV RNA at one year. Only MEMS correlated significantly with HIV RNA levels (r = −0.25, p = 0.04). Multivariable regression found the following to be associated with <90% MEMS adherence: hospitalization of child (adjusted odds ratio [AOR] 3.0, 95% confidence interval [CI] 1.6–5.5; p = 0.001), liquid formulation use (AOR 1.4, 95%CI 1.0–2.0; p = 0.04), and caregiver’s alcohol use (AOR 3.1, 95%CI 1.8–5.2; p<0.0001). Child’s use of co-trimoxazole (AOR 0.5, 95%CI 0.4–0.9; p = 0.009), caregiver’s use of ART (AOR 0.6, 95%CI 0.4–0.9; p = 0.03), possible caregiver depression (AOR 0.6, 95%CI 0.4–0.8; p = 0.001), and caregiver feeling ashamed of child’s HIV status (AOR 0.5, 95%CI 0.3–0.6; p<0.0001) were protective against <90% MEMS adherence. Change in drug manufacturer (AOR 4.1, 95%CI 1.5–11.5; p = 0.009) and caregiver’s alcohol use (AOR 5.5, 95%CI 2.8–10.7; p<0.0001) were associated with \geq48-hour interruptions by MEMS, while second-line ART (AOR 0.3, 95%CI 0.1–0.99; p = 0.049) and increasing assets (AOR 0.7, 95%CI 0.6–0.9; p = 0.0007) were protective against these interruptions. Conclusions/Significance: Adherence success depends on a well-established medication taking routine, including caregiver support and adequate education on medication changes. Caregiver-reported depression and shame may reflect fear of poor outcomes, functioning as motivation for the child to adhere. Further research is needed to better understand and build on these key influential factors for adherence intervention development

    Meeting the cultural and service needs of Arabic international students by using QFD

    Get PDF
    Quality has become an important factor in global competition for many reasons. Intensive global competition and the demand for better quality by customers has led organizations to realize the benefits of providing quality products and services in order to successfully compete and survive. Higher education institutions are one example of these organisations. Higher education institutions work in an intensive competitive environment worldwide driven by increasing demands for learning by local and international students. As a result, the managers of these sectors have realized that improving the quality of services is important for achieving customer satisfaction which can help survival in an internationally competitive market. To do this, it is necessary for organizations to know their customers and identify their requirements. To this end, many higher education institutions have adopted principles of total quality management (TQM) to improve their education quality which leads to better performance through involvement of every department to achieve excellence in business. This chapter considers the importance of measuring quality in order to assist universities to proactively manage the design and improvement of the social and academic experiences of postgraduate international students, and plan management decision-making processes to deliver high-quality services in a globalized business of provision of higher education. Higher education institutions must operate effectively and efficiently and be able to deliver quality programs, by seeking to better understand the needs of their customers to be competitive in this market space

    The Effect of Structural Complexity, Prey Density, and “Predator-Free Space” on Prey Survivorship at Created Oyster Reef Mesocosms

    Get PDF
    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats

    Enhanced Immunogenicity, Mortality Protection, and Reduced Viral Brain Invasion by Alum Adjuvant with an H5N1 Split-Virion Vaccine in the Ferret

    Get PDF
    Pre-pandemic development of an inactivated, split-virion avian influenza vaccine is challenged by the lack of pre-existing immunity and the reduced immunogenicity of some H5 hemagglutinins compared to that of seasonal influenza vaccines. Identification of an acceptable effective adjuvant is needed to improve immunogenicity of a split-virion avian influenza vaccine.No serum antibodies were detected after vaccination with unadjuvanted vaccine, whereas alum-adjuvanted vaccination induced a robust antibody response. Survival after unadjuvanted dose regimens of 30 µg, 7.5 µg and 1.9 µg (21-day intervals) was 64%, 43%, and 43%, respectively, yet survivors experienced weight loss, fever and thrombocytopenia. Survival after unadjuvanted dose regimen of 22.5 µg (28-day intervals) was 0%, suggesting important differences in intervals in this model. In contrast to unadjuvanted survivors, either dose of alum-adjuvanted vaccine resulted in 93% survival with minimal morbidity and without fever or weight loss. The rarity of brain inflammation in alum-adjuvanted survivors, compared to high levels in unadjuvanted vaccine survivors, suggested that improved protection associated with the alum adjuvant was due to markedly reduced early viral invasion of the ferret brain.Alum adjuvant significantly improves efficacy of an H5N1 split-virion vaccine in the ferret model as measured by immunogenicity, mortality, morbidity, and brain invasion

    The multi-peak adaptive landscape of crocodylomorph body size evolution

    Get PDF
    Background: Little is known about the long-term patterns of body size evolution in Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians and their extinct relatives. Extant crocodylians are mostly large-bodied (3–7 m) predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and many of the earliest taxa were much smaller ( Results: Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent an essentially continual decline since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope’s rule), or strong correlations of body size with climate. Instead, the intermediate to large body sizes of some crocodylomorphs are better explained by group-specific adaptations. In particular, the evolution of a more aquatic lifestyle (especially marine) correlates with increases in average body size, though not without exceptions. Conclusions: Shifts between macroevolutionary regimes provide a better explanation of crocodylomorph body size evolution on large phylogenetic and temporal scales, suggesting a central role for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger body sizes occurred in most aquatic and semi-aquatic groups. This, combined with extinctions of groups occupying smaller body size regimes (particularly during the Late Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.</p

    Normal and abnormal development of the aortic wall and valve: correlation with clinical entities

    Get PDF
    Dilation of the wall of the thoracic aorta can be found in patients with a tricuspid (TAV) as well as a bicuspid aortic valve (BAV) with and without a syndromic component. BAV is the most common congenital cardiovascular malformation, with a population prevalence of 0.5–2 %. The clinical course is often characterised by aneurysm formation and in some cases dissection. The non-dilated aortic wall is less well differentiated in all BAV as compared with TAV, thereby conferring inherent developmental susceptibility. Furthermore, a turbulent flow, caused by the inappropriate opening of the bicuspid valve, could accelerate the degenerative process in the aortic wall. However, not all patients with bicuspidy develop clinical complications during their life. We postulate that the increased vulnerability for aortic complications in a subset of patients with BAV is caused by a defect in the early development of the aorta and aortic valve. This review discusses histological and molecular genetic aspects of the normal and abnormal development of the aortic wall and semilunar valves. Aortopathy associated with BAV could be the result of a shared developmental defect during embryogenesis
    corecore