37 research outputs found

    Telomerase activity in melanoma and non-melanoma skin cancer

    Get PDF
    Telomeres are specialized structures consisting of repeat arrays of TTAGGGn located at the ends of chromosomes. They are essential for chromosome stability and, in the majority of normal somatic cells, telomeres shorten with each cell division. Most immortalized cell lines and tumours reactivate telomerase to stabilize the shortening chromosomes. Telomerase activation is regarded as a central step in carcinogenesis and, here, we demonstrate telomerase activation in premalignant skin lesions and also in all forms of skin cancer. Telomerase activation in normal skin was a rare event, and among 16 samples of normal skin (one with a history of chronic sun exposure) 12.5% (2 out of 16) exhibited telomerase activity. One out of 16 (6.25%) benign proliferative lesions, including viral and seborrhoeic wart samples, had telomerase activity. In premalignant actinic keratoses and Bowen's disease, 42% (11 out of 26) of samples exhibited telomerase activity. In the basal cell carcinoma and cutaneous malignant melanoma (CMM) lesions, telomerase was activated in 77% (10 out of 13) and 69% (22 out of 32) respectively. However, only 25% (3 out of 12) of squamous cell carcinomas (SCC) had telomerase activity. With the exception of one SCC sample, telomerase activity in a positive control cell line derived from a fibrosarcoma (HT1080) was not inhibited when mixed with the telomerase-negative SCC or CMM extracts, indicating that, overall, Taq polymerase and telomerase inhibitors were not responsible for the negative results. Mean telomere hybridizing restriction fragment (TRF) analysis was performed in a number of telomerase-positive and -negative samples and, although a broad range of TRF sizes ranging from 3.6 to 17 kb was observed, a relationship between telomerase status and TRF size was not found

    Telomerase activity of the Lugol-stained and -unstained squamous epithelia in the process of oesophageal carcinogenesis

    Get PDF
    Up-regulation of telomerase has been reported in many cancers. Our aim was to characterize telomerase activity in various states of the oesophagus to facilitate better understanding of carcinogenesis of oesophageal squamous cell carcinoma. During endoscopic examinations, we obtained 45 Lugol-stained normal epithelia, 31 Lugol-unstained epithelia (14 oesophagitis, 7 mild dysplasia, 5 severe dysplasia and 5 intramucosal cancer) and 9 advanced cancer. Telomerase activity was semi-quantified by a telomeric repeat amplification protocol using enzyme-linked immunosorbent assay, and expression of human telomerase reverse transcriptase mRNA was examined by in situ hybridization. In the Lugol-stained normal epithelia, telomerase activity increased in proportion to the increase of severity of the accompanying lesions, with a rank order of advanced cancer, intramucosal cancer, mild dysplasia and oesophagitis. In the Lugol-unstained lesions and advanced cancer, telomerase activity was highest in advanced cancer. Up-regulation of telomerase in normal squamous epithelium may be a marker of progression of oesophageal squamous cell carcinoma. Copyright 2001 Cancer Research Campaign © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Telomerase Inhibition Targets Clonogenic Multiple Myeloma Cells through Telomere Length-Dependent and Independent Mechanisms

    Get PDF
    Plasma cells constitute the majority of tumor cells in multiple myeloma (MM) but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC). These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities.Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1) as revealed by quantitative real-time PCR.Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms

    Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Get PDF
    João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target

    Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer

    Get PDF
    Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.info:eu-repo/semantics/publishedVersio
    corecore