220 research outputs found

    Effect of processing conditions on the structure, electrical and mechanical properties of melt mixed high density polyethylene/multi-walled CNT composites in compression molding

    Get PDF
    Abstract Processing conditions can significantly influence the structure and properties of polymer nanocomposites. In the present study, melt mixed high density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via twin-screw extrusion and then compression molded (CM). The effect of heating temperature, pressing time and cooling rate on the structure, electrical and mechanical properties of the CM nanocomposites was systematically investigated. Volume resistivity tests indicate that the nanocomposite with 2 wt.-% MWCNTs, which is in the region of the electrical percolation threshold, is very sensitive to the CM parameters such that heating temperature &gt; pressing time &gt; cooling rate. Generally, the resistivity of nanocomposites decreases with increasing heating temperature and pressing time. Interestingly, the electrical resistivity of the rapidly cooled nanocomposite with 2 wt.-% MWCNTs is about 2 orders lower than that of the slowly cooled nanocomposite which is attributed to the lower crystallinity and smaller crystallites presenting less of an obstacle to the formation of conductive pathways. The tensile properties of the nanocomposite with 2 wt.-% MWCNTs are also influenced by the compression molding parameters to some extent, while those of the nanocomposites with higher MWCNT loading are insensitive to the changes in processing conditions. The modulus of the nanocomposites increases by about 25 to 50 % and 110 to 130 %, respectively, with the incorporation of 2 and 4 wt.-% MWCNTs, which agrees well with the theoretical values predicted from Halpin-Tsai and Mori-Tanaka models. This work has important implications for both process control and the tailoring of electrical and mechanical properties in the commercial manufacture of conductive HDPE/MWCNT nanocomposites.</jats:p

    Additive Manufacturing and Injection Moulding of High-Performance IF-WS 2 /PEEK Nanocomposites: A Comparative Study

    Get PDF
    In this study, PEEK nanocomposites with 0, 0.5, 1, and 2wt% IF-WS2 were manufactured by injection moulding and Fused Deposition Modelling (FDM). To compare the impact of the two processing methods and the incorporated nanoparticles on the morphology, crystallization and final mechanical properties of the nanocomposites, SEM, DSC and tensile testing were performed. In general, a good distribution of nanoparticles was observed in PEEK, although larger agglomerates were visible at 2 wt% IF-WS2. The crystallization degree of PEEK increased with increasing loading of IF-WS2 nanoparticles up to 1wt% and then declined at 2 wt%, due to lower level of particle dispersion in this sample. The 3D printed samples showed slightly higher crystallinity at each IF-WS2 loading in relation to the injection moulded samples and extruded filaments, because of multiple reheating effect from subsequent layer deposition during FDM, causing recrystallization. In general, incorporation of IF-WS2 nanoparticles increased the mechanical properties of pure PEEK in both 3D printed and injection moulded samples. However, this increment was more noticeable in the 3D-printed nanocomposite samples, resulting in smaller gap between the mechanical properties of the 3D-printed samples and the injection moulded counterparts, in respect to pure PEEK, particularly at 1 wt% IF-WS2. This effect is ascribed to the increased inter-layer bonding of PEEK in the presence of IF-WS2 nanoparticles in FDM. In general, the lower mechanical properties of the 3D printed samples compared with the injection moulded ones are ascribed to poor interlayer bonding between the deposited layers and the presence of voids. However, addition of just 1 wt% of IF-WS2 nanoparticles into PEEK increased the tensile strength and Young’s modulus of the FDM PEEK materials to similar levels to those achieved for unfilled injection moulded PEEK. Therefore, incorporation of IF-WS2 nanoparticles into PEEK is a useful strategy to improve the mechanical performance of FDM PEEK

    Melt-Blended Multifunctional PEEK/Expanded Graphite Composites

    Get PDF
    In this work, antistatic, high-performance composites of poly (ether ether ketone) (PEEK) and concentrations of 0.5–7 vol% expanded graphite (EG) were fabricated via twin-screw extrusion and injection moulding at mould temperatures of 200°C. The morphological, electrical, rheological, thermal, mechanical, and wear properties of the composites were investigated. Scanning electron microscope (SEM) images indicate that distribution and dispersion of EG platelets in the PEEK matrix are enhanced at higher EG loadings. The electrical conductivity of the composites with 5 vol% of EG exhibits a sharp rise in the electrical conductivity range of antistatic materials because of the formation of conductive paths. The formation of a three-dimensional EG network led to a rapid increase in the storage modulus of the melt of the 2 vol% of EG-loaded composite at a frequency of 0.1 rad/s and temperature of 370°C. The neat PEEK and composites containing 0.5–5 vol% EG indicated a cold-crystallisation peak in the first heating scan of a non-isothermal differential scan calorimetry (DSC) test and their crystallinity degrees changed slightly. However, after removing their thermal and stress histories, the EG platelets promoted nucleation and increased the PEEK crystallinity remarkably, indicating that annealing of the PEEK composites can improve their mechanical performance. The neat PEEK exhibits the standard tensile and flexural stress-strain behaviour of thermoplastics, and the composites exhibit elastic behaviour initially followed by a weak plastic deformation before fracture. The addition of 5 vol% of EG to PEEK increased the tensile and flexural modulus from 3.84 and 3.55 GPa to 4.15 and 4.40 GPa, decreased the strength from 96.73 and 156.41 MPa to 62 and 118.19 MPa, and the elongation at break from 27.09 and 12.9% to 4 and 4.6%, respectively. The wear resistance of the composite containing 3 vol% EG was enhanced by 37% compared with the neat PEEK
    corecore