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Abstract

This paper extends the applications of a novel and fully automated multi-scale computational

homogenisation framework, originally proposed by the authors (Ullah, et al. (2017)) for uni-

directional and 2D-textile composites, to 3D-textile composites. 3D-textile composites offer

many advantages over 2D-textile composites but their highly complicated and unpredictable

post-cured geometries make their design very challenging. Accurate computational models

are therefore essential to the development of these materials. The computational framework

described in this paper possesses a variety of novel features which have never been tried for

this class of composites and can potentially help to fully automatise and improve their design

process. A unified approach is used to impose the representative volume element boundary

conditions, which allows convenient switching between linear displacement, uniform traction

and periodic boundary conditions. The computational framework is implemented using hier-

archic basis functions of arbitrary polynomial order, which allows one to increase the order

of approximation without changing the finite element mesh. The yarns’ principal directions,

required for the transversely isotropic material model are calculated using a potential flow anal-

ysis along these yarns. This feature is very useful for 3D-textile composites and can accurately

determine fibres’ directions even in the case of very deformed yarns. A numerical example from

literature consisting of a 3D-orthogonal woven composite is used to demonstrate the correct

implementation and performance of the developed computational framework. Also, the devel-

oped computational framework is used to perform a comparative study of the homogenised

mechanical properties of five 3D-textile composites with different yarn architectures.
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1. Introduction

Due to their exceptional mechanical and chemical properties, fibre reinforced polymer (FRP)

composites are used in a variety of engineering applications including aerospace, automotive,

marine, prosthetics and civil structures [1, 2]. Textile or woven composites make use of in-

terlaced or woven fibres as reinforcement and integrate the full functionality of the textile

processing industry into composite manufacturing [3]. Conventional two-dimensional textile

reinforcement, e.g. plain, twill and n-harness satin architectures offer a variety of advantages

including high strength, high stiffness, low density and low manufacturing cost [4]. These

2D-textile composites have outstanding in-plane mechanical properties but suffer from having

very week mechanical properties in the out-of-plane direction [5–7]. 3D-textile composites have

yarns oriented in x, y and z directions and therefore possess improved out-of-plane proper-

ties. As compared to conventional 2D-textile composites, 3D-textile composites possess high

delamination resistance and improved impact performance [8–10]. 3D-textile composites allow

manufacturing of near-net shape in a single production step leading to minimum scrap [11].

However, lower fibre volume fraction and reduced in-plane mechanical properties are limitations

of 3D-textile composites [12–16]. Moreover, the associated highly complex and unpredictable

geometry making their modelling more challenging.

Due to the multi-scale, complicated and heterogeneous nature of 3D-textile composites, com-

putational homogenisation (CH) is the most appropriate computational framework for the

calculation of their effective or homogenised properties [17, 18]. These homogenised properties

can then be used for the analysis of macro-level structure. As compared to analytical meth-

ods [19–24], numerical techniques provide better prediction of their homogenised mechanical

properties. A brief overview of the available literature on the computational homogenisation of

3D-textile composites is given here. A detailed description of a 3D Mosaic structural analysis

tool is given in [25]. The developed tool was used for the calculation of homogenised me-

chanical properties of 3D-orthogonal composites, modelled using an idealised geometry. The

simulation results were compared with experimental data and found in a good agreement. In

[26], effects of the z-yarns’ geometry on the homogenised mechanical properties were investi-

gated using finite element analysis. Both crowned and un-crowned z-yarns were considered.

In [27], meshfree methods based on radial basis functions and moving kriging interpolation

were used for the calculation of homogenised mechanical properties of 3D-orthogonal woven

composites. Results were compared with the finite element and experimental results from [25]

and found in a good agreement. A finite element based procedure for calculating the effective

mechanical properties of 3D-textile composites was presented in [28]. The main emphasis was

on the accurate geometric modelling and the procedure was used for three weave types. Nu-

merical results were compared with the experimental results and found to be about 10% stiffer.

A discrete homogenisation scheme was used in [8] for the prediction of effective mechanical
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properties of 3D dry textiles composites. Results were satisfactory compared to FEM results.

A non-conformal mesh-based finite-element procedure was proposed in [29] for the calculation

of thermo-mechanical properties of 2D and 3D textile composites. The procedure allowed to

mesh penetrated yarns without geometrical modifications. A comparative study between peri-

odic and free mesh for 3D braided composite was peformed in [30]. Freely generated mesh was

combined with general periodic boundary condition. Predicted stiffnesses, stresses distribution,

deformations and strengths by mean of free mesh unit cell agree well with those using periodic

mesh. Recently in [31], a multi-scale finite element is applied to 3D-textile composites with

voids in both matrix and yarns. Experiments were also conducted to verify the FE model. A

comprehensive book on the woven composites has been published recently [32] dealing with the

experimental, analytical and numerical studies of both 2D and 3D woven composites. A detailed

computational homogenisation procedure and continuum damage model were presented in the

same book and used within the framework of both finite elements and meshless methods [33].

The book also presents the experimental, analytical and numerical models for the compressive

failure of woven composites [34]. Moreover, a detailed numerical procedures for the 3D woven

composites both on the unit-cell and structural-level were also included [35].

In this paper, we extend the application of a novel and fully automated multi-scale CH frame-

work to 3D-textile composites, originally proposed in the authors’ previous paper, [17], for

unidirectional and 2D-textile composites. The computational framework possesses a variety

of novel features which are very useful in the case of 3D-textile composites. The highly com-

plicated and unpredictable post-cured geometries associated with these composites consisting

of fully deformed yarns within the matrix material making their design very challenging. On

the other hand, 3D-textile composites help to fully exploit the flexibility and robustness of the

computational framework. A unified approach [17, 36, 37] is used to impose the representative

volume element (RVE) boundary conditions, which allows convenient switching between linear

displacement, uniform traction and periodic boundary conditions. The computational frame-

work is implemented using hierarchic basis functions of arbitrary polynomial order [38], which

allows to increase the order of approximation without changing the finite element mesh. The

yarns’ principal directions, required for the transversely isotropic material model are calculated

using a potential flow analysis along these yarns. This feature is very useful for 3D-textile com-

posites and can accurately determine fibres’ directions even in the case of very deformed yarns.

The computational framework was designed to take advantage of the distributed memory high-

performance computing and is implemented using PETSc [39] and MOAB [40] libraries. Both

matrix and yarns are considered as homogeneous and linear elastic materials. Matrix and yarns

are modelled using isotropic and transversely isotropic material models respectively. Yarns ge-

ometry are modelled with elliptical cross-sections and cubic spline paths. CUBIT/Trelis [41]

and Paraview [42] are used as a pre- and post-processor respectively.
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This paper is organised as follows. A detailed description of the computational framework is

given in §2. The associated multi-scale CH and the corresponding imposition of RVE boundary

conditions are given in §2.1. A brief overview of the calculation of yarns’ principle directions,

required for the transversely isotropic material model and the associated transformation of stiff-

ness matrix from local to global coordinate axes are given in §2.2. Two numerical examples are

given in §3. The first numerical example (§3.1) is chosen from the literature and used to validate

the proposed computational framework. In the second numerical examples (§3.2), a compari-

son of the homogenised mechanical properties are made among five 3D-textile composites with

2.5D and 3D yarn architectures. Finally, concluding remarks are given in §4.

2. Computational framework

The computational framework proposed for the calculation of homogenised mechanical prop-

erties consists of multi-scale CH and the associated imposition of RVE boundary conditions.

Computation of the fibres directions within yarns is also an integral part of the same framework.

2.1. Multi-scale computational homogenisation

The working principle of multi-scale CH is shown in Figure 1, where an RVE consisting of 3D

arrangement of yarns is associated with each macro-level integration point x =
[
x1 x2 x3

]T
.

In Figure 1, Ω ⊂ R3 and Ωµ ⊂ R3 represents the macro- and micro-level structures respectively.

Homogenised stress

Macro-structure

Micro-structure (RVE)

Solve boundary

value problem

Macro strain 

Integration point

Stiffness matrix

 

Point

Figure 1: Multi-scale computational homogenisation.
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The macro-to-micro transition consists of the construction of a micro-level boundary value

problem. This step consists of formulation of RVE boundary conditions using the macro-

level strain ε =
[
ε11 ε22 ε33 2ε12 2ε23 2ε31

]T
. Solution of the RVE boundary value

problem is then followed by micro-to-macro transition. This step consists of calculation of the

homogenised stress σ =
[
σ11 σ22 σ33 σ12 σ23 σ31

]T
and stiffness matrix C. At a point

y =
[
y1 y2 y3

]T
on the RVE, the displacement field is written as

uµ (y) = ε (x)y + ũµ (y) , (1)

where εy and ũµ are linear and fluctuating displacement terms. Strain at point y is written as

εµ (y) = ∇suµ = ε (x) + ε̃ (y) , (2)

consisting of macro-level strain ε (x) and strain fluctuation ε̃ (y). The volume average of the

micro-level strain should give the macro-level strain, i.e.

ε (x) =
1

V

∫
Ωµ

εµ (y) dΩµ = ε (x) +
1

V

∫
Ωµ

ε̃µ (y) dΩµ, (3)

where V is the volume of the RVE. To satisfy Equation (3), the volume average of the strain

fluctuation should be zero, i.e.
1

V

∫
Ωµ

ε̃µ (y) dΩµ = 0. (4)

Similarly, calculation of the macro-stress σ is determined by volume averaging of the micro-

stress σµ, i.e.

σ (x) =
1

V

∫
Ωµ

σµ (y) dΩµ. (5)

The strong form of the equilibrium equation for the RVE is written as

div (σµ) = ∇ · σµ = 0. (6)

Similarly, the weak form of Equation (6) is written as∫
Ωµ

σµ (y) : ∇sηµdΩµ −
∫
∂Ωµ

t (y) · ηµ∂Ωµ = 0. (7)

In Equation (7), the first term on the right hand side is known as internal virtual work and the

associated second term is knows as external virtual work. t and ηµ are applied traction and

virtual displacement respectively.

According to the Hill-Mandel principle, the relation between macro- and micro-level work is
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written as

ε : σ =
1

V

∫
Ωµ

εµ : σµdΩµ. (8)

Combining Equations (1), (5), (7) and (8) leads to∫
Ωµ

σµ (y) : ∇sηµdΩµ = 0, (9)

and the second term in Equation (7) vanish, i.e.∫
∂Ωµ

t (y) · η∂Ωµ = 0. (10)

Thus, on the micro-level, the problem reduces to a calculation of the displacement fluctuation

for a given macro-strain ε.

The following three types of RVE boundary conditions are considered in this paper:

1. Linear boundary displacement: In this case, it is assumed that the displacement fluctua-

tion ũµ (y) is zero over the RVE boundary. Therefore, Equation (1) is written as

uµ (y) = ε (x)y, ∀y ∈ ∂Ωµ. (11)

This leads to fully prescribed displacement on the RVE boundary.

2. Periodic boundary conditions: In this case displacement and traction are assumed to be

periodic and anti-periodic respectively, i.e.

ũµ (y+) = ũµ (y−)

t (y+) = −t (y−)

}
∀ pairs

{
y+, y−

}
, (12)

here, y+ ∈ ∂Ω+
µ and y− ∈ ∂Ω−

µ are two opposite points on the RVE boundary.

3. Uniform traction boundary conditions: In this case the traction on the RVE boundary is

prescribed using the macro-level stress σ, i.e.

t = σ · n, (13)

here n represents normal to the RVE boundary.

These three types of RVE boundary conditions generate different RVE behaviour. The linear

displacement boundary conditions generate the stiffest RVE response. On the other hand, the

traction boundary condition leads to a least kinematically constrained response. The response

of the periodic boundary conditions lies between the displacement and traction boundary con-

ditions. In this paper, the RVE boundary conditions are implemented in a unified manner
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[17, 36, 37] within the framework of hierarchic basis functions [38] using distributed memory

high-performance computing. The discretised system of equations are written as:[
K CT

C 0

]{
u

λ

}
=

{
0

Dε

}
, (14)

here K is the stiffness matrix and u is the a vector of unknown displacements. Moreover, λ is

an unknown vector of Lagrange multipliers and Matrices C and D are calculated over the RVE

boundary and are given as

C =

∫
∂Ωµ

HNTNd∂Ωµ, D =

∫
∂Ωµ

HNTXd∂Ωµ. (15)

A detailed description of matrices N, X and H are given in [17, 36, 37] and is not repeated

here. Finally, homogenised stress is calculated from the resulted Lagrange multipliers λ using

σ =
1

V
DTλ. (16)

Similarly, the homogenised stiffness matrix C, which relates the macro-level stress σ and strain

ε, is calculated by solving six RVE problems subjected to six unit strains leading to

C =
[
σ1 σ2 σ3 σ4 σ5 σ6

]
, (17)

where for example:

σ1 : for ε =
[

1 0 0 0 0 0
]T

σ4 : for ε =
[

0 0 0 1 0 0
]T . (18)

Finally, mechanical properties including Young’s moduli, shear moduli and Poisson’s ratios can

be calculated using the procedure described in §Appendix A.

2.2. Yarns directions

In this paper, yarns are considered as unidirectional composites, consisting of fibre bundle in

a polymer matrix and are modelled as homogeneous and transversely isotropic materials. Five

elastic constants are required to fully describe the material behaviour of yarns on the meso-

level. These material constants are Ep, νp, Ez, νpz and Gzp, where p and z are transverse and

axial directions respectively as shown in Figure 2.

The global stiffness matrix K, given in Equation (14), consists of contributions from both

matrix and yarns. Transformation of the local stiffness matrix is required at each integration

point associated with yarns from local to global coordinates. The local coordinate system here
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2

3
1

Figure 2: Transversely isotropic material model.

is associated with the integration point while global coordinates are associated with the RVE.

In order to perform this transformation, the yarns direction needs to be calculated at each of

these points. In this paper, a similar approach based on the potential flow theory, as described

in our previous publication [17, 18, 37], is used for the calculation of yarns’ directions. Yarns

are considered as pipes and the potential flow problem is solved through each of them in turn.

The strong form of governing equation for the potential flow is written as

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0, (19)

where φ is the potential field. The gradient of the potential field is a velocity vector ∇φ = v,

which can be considered as the direction of yarns. The different processes involved in the

manufacturing of 3D-textile composites result in deformed yarns consisting of variable cross-

sections along their lengths. Therefore, the aforementioned approach is the most appropriate

way to determine their directions. Application of this approach to more complicated cases is

also demonstrated in [43].

Finally, the following expression is used to transfer the local stiffness matrix Cloc into global

stiffness matrix Cglob

Cglob = TσClocT
T
σ = T−T

ε ClocT
−1
ε , (20)

here Tσ and Tε are coordinate transformation matrices for stress and strain respectively, the

details of which are given in [44].
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3. Numerical Examples

Two numerical examples are presented now to demonstrate the correct implementation and

performance of the developed computational framework. The first numerical example is used to

validate the computational framework against already existing results available in the literature.

In the second numerical example, a comparison is made among the homogenised mechanical

properties of five 3D-textile composites with different yarn architectures.

3.1. 3D orthogonal woven composite with straight-edge yarns

The first numerical example consists of a 3D-textile composite with through-the-thickness,

orthogonal yarns architecture. The same example is also given [25, 27, 45], which is used here

for validation of the proposed computational framework. A detailed RVE for this example is

shown in Figure 3. A 3D orthogonal woven fabric is shown in Figure 3(a). An RVE consisting

of both matrix and yarns is shown in Figure 3(b). Figures 3(c) and 3(d) show a separate

view of the matrix and yarns respectively. Binder yarns are also shown in Figure 3(e). Yarns

geometry is assumed to be oversimplified consisting of rectangular cross-sections. Similarly, in

the thickness direction, binder yarns are modelled as broken lines consisting of two inclined and

one vertical section. In this case, the RVE consists of two layers of warp yarns and three layers

of weft yarns. In [25, 27, 45], the RVE geometry was modified to account for the indentation of

the binder yarns into the weft yarns. In addition, warp segments of the binder yarns and the

associated top and bottom matrix layers were removed. These geometrical modifications help

in removing extra matrix material leading to a fibre volume fraction of 49% which is equivalent

to the experimentally observed value. The experimental fibre volume fraction in the yarns and

RVE are 60% and 49% respectively. These modification leads to non-periodic geometry and

mesh in the thickness direction.

In the proposed computational framework, periodic geometry and mesh are prerequisites to

impose the periodic boundary condition on the RVE. In this paper, we are analysing two cases,

i.e. one with the original RVE (shown in Figure 3(b)) and one with the same modifications

as suggested in [25, 27, 45] (shown in Figure 4(a)). The original periodic RVE allows to

use linear displacement, periodic and uniform traction boundary conditions while the modified

non-periodic RVE only allows to impose the linear displacement and uniform traction boundary

conditions. The original RVE has a very low fibre volume fraction of 31.0% while the modified

RVE has a fibre volume fraction of 48.35%. The lower fibre volume fraction associated with the

original RVE lead to lower values of Young’s and shear moduli as compared to one obtained

in [25, 27, 45]. The associated mesh of the full RVE is also shown in Figure 3(b) consisting

of 17,675 elements and 6,348 nodes. The geometry is meshed with tetrahedral elements and a

periodic mesh consisting of exactly the same triangular mesh on opposite boundaries. Similarly,
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Figure 3: RVE of 3D orthogonal woven composite with straight edges.

meshes associated with matrix, yarns and binder yarns are shown in Figures 3(c), 3(d) and

3(e) respectively. The yarns mesh consists of 6,275 tetrahedral elements and 2,683 nodes and

the matrix mesh consists of 11,400 tetrahedral elements and 3,665 nodes. Similarly for the

modified RVE, the associated mesh consisting of 16,985 tetrahedral elements and 5,361 nodes

and is shown in Figure 4(a). Moreover, meshes associated with yarns and binder yarns are

shown in Figures 4(b) and 4(c) respectively. Only tetrahedral elements are used in this paper,

generated using CUBIT. Tetrahedral elements are normally used for meshing complicated ge-

ometries with automatic (or semi-automatic) mesh generation algorithms [46]. Both tetrahedral

and hexahedral meshes are used in [45] for the calculation of homogenised mechanical prop-

erties of 2×2 Twill woven composites. For the same number of elements, tetrahedral elements

required a significantly lower number of degrees of freedom, leading to computational efficiency.
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Figure 4: Modified RVE geometry and yarns direction for the 3D orthogonal woven composite with straight
edges.

In [33], tetrahedral elements were used for the woven composites due to their complicated ge-

ometries. As described in §2.2, two and five material parameters are required for the matrix

and yarns respectively. The material parameters for yarns and matrix are given in Tables 1

and 2 respectively. These material parameters are the same as those used in [25, 27, 45] for the

S-2 glass fibre and Dow Derakane 8084 Vinyl Ester-Epoxy matrix materials.

Parameter Value
Ep 14.66 GPa
Ez 53.12 GPa
νp 0.268
νpz 0.07341
Gzp 4.24 GPa

Table 1: Yarns material parameters for the 3D orthogonal woven composite with straight edges.

Parameter Value
E 3.17 GPa
ν 0.35

Table 2: Matrix material parameters for the 3D orthogonal woven composite with straight edges.

The calculated yarns directions for the full and modified RVEs are shown in Figures 5 and
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4(c) respectively. For the full RVE, the calculated nine homogenised material properties in the

global coordinates x, y and z for the resulting orthotropic material are shown in Figures 6 and

7. In this case, three types of RVE boundary conditions including linear displacement, periodic

and uniform traction are used to obtained these properties. These results are in accordance

with §2.1, i.e. the linear displacement boundary condition generate the stiffest RVE response

leading to higher values of Young’s and shear moduli. On the other hand, the kinematically

least constrained response of the uniform traction boundary condition leads to the lowest values

of Young’s and shear moduli. The effective properties calculated with the periodic boundary

condition lie between the upper and lower limit of linear displacement and uniform traction

boundary conditions [37, 47, 48]. A sample of the full deformed RVEs due to the application of

εxx = 1, subjected to linear displacement, periodic and uniform traction boundary conditions

is shown in Figures 8(a), 8(b) and 8(c) respectively. Similarly, for the applied strain εzz = 1

and 2εzx = 1, the deformed RVEs are given in Figures 9 and 10 respectively.

For the full RVE, these homogenised material properties are calculated using three order of

approximations [38] as shown in Figures 6 and 7. These are represented by p1, p2 and p3

in Figure 6(a). The associated degrees of freedom for p1, p2 and p3 are 11,628 81,630 and

263,406 respectively. Homogenised material properties are changing from p1 and p2 but the

change between p2 and p3 are negligibly small. Therefore, p2 can be considered as the most

appropriate order of approximation, given the high computational cost associated with p3. The

homogenised material properties in this case are also compared with results from [25, 27, 45],

which are also plotted in Figures 6 and 7. Lower volume fraction of 31.0% in the case of a

full RVE compared to 49.0% in [25, 27, 45] leads to lower values of Young and shear moduli.

In addition to the stiffness contribution in the z direction as shown in Figure 6(c), binder

yarns are also contributing to stiffness in the warp or x direction. Therefore, homogenised

Young’s modulus in the warp or x direction, i.e. Exx as shown in Figure 6(a) is higher than the

corresponding Young’s modulus in the weft or y direction as shown in Figure 6(b). Similarly,

the slightly higher values of out-of-plane shear modulus Gxz compared to Gyz which are shown

in Figures 6(d) and 6(e) respectively are also due to the existence of binder yarns. The values

of in-plane shear modulus Gxy as shown in Figure 6(f) are higher than both out-of-plane shear

moduli, i.e. Gxz and Gyz. The out-of-plane Poisson’s ratios, i.e. νxz and νyz as shown in Figures

7(a) and 7(b) respectively are almost similar. The in-plane Poisson’s ratio, i.e. νxy as shown

in Figure 7(c) is very small compared to both νxz and νyz. This is due to the existence of warp

and weft yarns in the x and y directions respectively restricting transverse deformation. For the

modified RVE, a comparison between the homogenised material properties and the reference

results from [25, 27, 45] is shown in Figures 11 and 12. A comparison between the full and

modified RVE against the reference results are also given in Table 3. Compared to the full RVE,

homogenised properties obtained with the modified RVE are in excellent agreement with the

reference results. The excellent results obtained from the first numerical example provide us
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with confidence to use the proposed computational framework for more complicated 3D-textile

composites.

Figure 5: Yarn directions for the 3D orthogonal woven composite with straight edges.

Approach Exx Eyy Ezz Gxy Gyz Gzx νxy νxz νyz

Bogdanovich, 2006 27.31 25.7 9.98 3.58 3.58 3.34 0.125 0.432 0.448
Li, et.al., 2011 27.37 27.29 12.24 3.45 3.94 3.65 0.121 0.291 0.305
Bacarreza, et.al., 2012 28.68 27.4 12.31 3.52 3.9 3.77 0.12 0.305 0.295

Full RVE (displacement) 19.11 17.97 7.43 2.61 2.25 2.26 0.135 0.364 0.361
Full RVE (periodic) 19.03 17.92 7.24 2.55 2.07 2.07 0.133 0.368 0.368
Full RVE (traction) 14.39 14.31 6.85 2.46 2.05 2.06 0.151 0.380 0.375

Modified RVE (displacement) 28.30 26.78 11.83 3.53 3.74 3.81 0.122 0.303 0.302
Modified RVE (traction) 22.43 18.13 10.47 3.26 3.30 3.36 0.158 0.307 0.329

Table 3: Comparison of the homogenised mechanical properties of the full and modified RVEs against the values
from literature

3.2. Comparative study of five different 3D-textile composites

In this example, a comparative study is performed to investigate the homogenised mechanical

properties of the following five 3D-textile composites consisting of 2.5D and 3D yarns architec-

tures.

• 3D-textile composites with 3D yarn architecture

– 3D orthogonal interlock (3D-OI),

– 3D layer-to-layer interlock (3D-LTLI),

– 3D through-the-thickness angle interlock (3D-TTTAI),

• 3D-textile composites with 2.5D yarn architecture
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Figure 6: Homogenised Young’s and shear moduli for the 3D orthogonal woven composite with straight edges.

– 2.5D layer-to-layer angle interlock (2.5D-LTLAI),

– 2.5D layer-layer angle interlock or through-the-thickness angle interlock (2.5D-LLAI),
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Figure 7: Homogenised Poisson’s ratios for the 3D orthogonal woven composite with straight edges.

(a) Displacement (b) Periodic (c) Traction

Figure 8: Deformed RVE due to applied strain εxx = 1 for the 3D orthogonal woven composite with straight
edges.

The full details of their geometrical description are given in [8]. Yarns geometry are modelled

with elliptical cross-sections and cubic spline paths. For the composites with 3D-textile yarns
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(a) Displacement (b) Periodic (c) Traction

Figure 9: Deformed RVE due to applied strain εzz = 1 for the 3D orthogonal woven composite with straight
edges.

(a) Displacement (b) Periodic (c) Traction

Figure 10: Deformed RVE due to applied strain 2εzx = 1 for the 3D orthogonal woven composite with straight
edges.

architectures, the dimensions of weft, warp and binder yarns are given in Table 4. Spacing

between weft (Lf ), warp (Lp) and binder (Lb) yarns are also given in the same table. For the

composites with 2.5D yarns architectures the corresponding dimensions are given in Table 5.

For the 3D-OI, the geometry with mesh and coordinate system is shown in 13(a) consisting of

two layers of warp yarns and three layers of weft yarns. Only yarns and corresponding front view

are also shown in Figures 13(b) and 13(c) respectively. A very similar geometrical description

for 3D-LTLI, 3D-TTTAI, 2.5D-LTLAI and 2.5D-LLAI RVEs is given in Figures 14, 15, 16 and

17 respectively. The dimensions of the RVEs in x, y and z directions and their corresponding

volumes are given in Table 6. The volume fraction of matrix (V m = vm/vRV E), warp yarns

(V p = vp/vRV E), weft yarns (V f = vf/vRV E) and binder yarns (V b = vb/vRV E), are calculated

using CUBIT/Trelis and are given in Table 7. Here vm, vp, vf , vb, vRV E are volumes of matrix,

warp yarns, weft yarns, binder yarns and full RVE respectively. The material properties for

yarns and matrix used in this case are similar to those used in the previous example and are

given in Tables 1 and 2 respectively.
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Figure 11: Homogenised Young’s and shear moduli using modified RVE for the 3D orthogonal woven composite
with straight edges.

The proposed computational framework is used to calculate the homogenised mechanical prop-

erties of these five composites. Similarly to the previous example, three orders of approximation

17



(a) (b)

(c)

0 0.5 1 1.5 2 2.5

10
5

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0 0.5 1 1.5 2 2.5

10
5

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0 0.5 1 1.5 2 2.5

10
5

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Figure 12: Homogenised Poisson’s ratios using modified RVE for the 3D orthogonal woven composite with
straight edges.

are used. The number of elements and the corresponding degrees of freedom for the first (p = 1),

second (p = 2) and third (p = 3) order of a approximation are given in Table 8. The resul-

tant yarns directions determined using potential flow theory (§2.2) are shown in Figures 18(a),

18(b), 18(c), 18(d), 18(e) for 3D-OI, 3D-LTLI, 3D-TTTAI, 2.5D-LTLAI and 2.5D-LLAI re-

spectively. In this example, only the liner displacement boundary conditions is used to impose

the RVE boundary conditions. A comparison of the homogenised mechanical properties of the

five 3D-textile composites are shown in Figures 19 and 20. As in the previous example, the

homogenised mechanical properties decrease from p1 to p2 but the difference between p2 to p3

are negligible. A comparison for Exx including five different composites and three orders of

approximation are given in 19(a). For a composite with 3D yarns architectures, the values of

Exx is very high as compared to one with 2.5D yarns architectures. This may be due to very

high Vp for composites with 3D yarns architectures (Vp ≥ 13.39% ) as compared to one with

2.5D yarns architectures (Vp = 7.60%). For all three composites with 3D yarns architectures,
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values of Exx are almost similar but the 3D-TTTAI has the highest values followed by 3D-LTLI

while 3D-OI has the lowest values. For the two composites with 2.5D yarns architectures, LLAI

has higher values of Exx as compared to LTLAI. It is clear from Figure 19(a) that multiple

factors can affect values of Exx including yarns architectures and volume fraction of warp (Vp)

and binder (Vb) yarns.

A comparison of the homogenised Young’s modulus in the y direction, i.e. Eyy, is given in

Figure 19(b). For all five composites, the large sizes and corresponding large Vf of weft yarns

leads to higher values of Eyy as compared to the corresponding values of Exx. Similar to Exx,

values of Eyy are higher for composites with 3D yarns architecture as compared to one with

2.5D yarns architecture. A very similar architecture of the weft yarns and corresponding equal

values of Vf for the three composites with 3D yarns architectures lead to very similar values

of Eyy. The slightly lower values of Ey for 3D-TTTAI may be due to a lower Vf = 23.73% as

compared to Vf = 23.92% for both 3D-OI and 3D-LTLI. Similarly, the two composites with

2.5D yarns architectures have very similar values of Ey, which is again due to their similar

yarns architectures in the weft direction and corresponding similar values of Vf . The slightly

higher values for 2.5D-LTLAI may be due to the higher value of Vf = 14.11% as compared to

Vf = 12.33% for 2.5D-LLAI. A comparison of through-the-thickness Young’s modulus (Ezz) for

all five composites is shown in Figure 19(c). As with Exx and Eyy, values of Ezz are higher for

composites with 3D yarns architectures as compared those with 2.5D yarns architectures. For

the composites with 3D yarn architecture, 3D-OI has the highest Ezz followed by 3D-LTLI while

3D-TTTAI has the lowest values. For the composites with 2.5D yarn architecture, 2.5D-LTLAI

has higher value of Ez as compared to 2.5D-LLAI. For all three shear moduli Gxy, Gyz and Gzx,

a consistent trend can be seen in Figures 19(d), 19(e) and 19(f) respectively for both composites

with 3D and 2.5D yarns architectures. For the composites with 3D yarns architectures, 3D-

LTLI has the highest values of shear moduli followed by 3D-OI while 3D-TTTAI has the lowest

values. For composites with 2.5D yarns architecture, 2.5D-LTLAI has higher values of shear

moduli as compared to 2.5D-LLAI. Finally, a comparison of the homogenised Poisson’s ratios

νxy, νxz and νyz for the five composites is shown in Figures 20(a), 20(b) and 20(c) respectively.

As with the previous example, in-plane Poisson’s ratio νxy are very small compared to the

out-of-plane Poisson’s ratio νxz and νyz.

Yarns Width (mm) Thickness (mm) Spacing
Weft 0.27 0.15 Lf = 0.429
Warp 0.25 0.15 Lp = 0.473
Binder 0.08 0.05 Lb = 0.473

Table 4: Geometry parameters for composites with 3D yarns architecture.
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Yarns Width (mm) Thickness (mm) Spacing
Weft 0.25 0.15 Lf = 1.0
Warp 0.25 0.15 Lp = 0.5

Table 5: Geometry parameters for composites with 2.5D yarns architectures.

3D-OI 3D-LTLI 3D-TTTAI 2.5D-LTLAI 2.5D-LLAI
Lx (mm) 0.858 0.858 2.145 2.000 4.000
Ly (mm) 0.946 0.946 2.365 1.000 2.000
Lz (mm) 0.930 0.930 1.250 1.550 1.550
Volume (mm3) 0.755 0.755 6.341 3.100 12.400

Table 6: RVEs sizes and volume for composites with 2.5D and 3D yarns architectures.

Composite Volume RVE Vm % VP % Vf % Vb %
3D-OI 0.75 60.82 13.39 23.92 1.87
3D-LTLI 0.75 60.24 13.39 23.92 2.45
3D-TTTAI 6.34 60.57 14.94 23.73 0.76
2.5D-LTLAI 3.10 78.29 7.60 14.11 0.00
2.5D-LLAI 12.40 80.07 7.60 12.33 0.00

Table 7: Volume fraction of yarns and matrix for composites with 2.5D and 3D yarns architectures.

Composite Elements DOFs (1st order) DOFs 2nd order DOFs 3rd order
3D-OI 23, 110 12, 957 97, 626 323, 340
3D-LTLI 45, 915 25, 002 190, 656 634, 710
3D-TTTAI 86, 734 46, 671 362, 439 1, 209, 000
2.5D-LTLAI 16, 192 9, 711 71, 355 233, 511
2.5D-LLAI 42, 423 23, 358 179, 070 594, 408

Table 8: Number of elements and degrees of freedom for composites with 2.5D and 3D yarns architectures.

Figure 13: Representative volume element for 3D orthogonal interlock.
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Figure 14: Representative volume element for 3D layer-to-layer interlock.

Figure 15: Representative volume element for 3D through-the-thickness angle interlock.

4. Concluding remarks

A novel, multi-scale, computational framework is proposed for the calculation of the ho-

mogenised mechanical properties of 3D textile/woven FRP composites. In addition to the

unified approach used for the imposition of the RVE boundary conditions, the computational

framework has additional flexibility of hierarchic basis functions and high-performance comput-

ing. Matrix and yarns are modelled as isotropic and transversely isotropic materials. A very
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Figure 16: Representative volume element for 2.5D layer-to-layer angle interlock.

generalised and robust procedure based on the potential flow theory is used for the calculation

of the yarns’ principle directions, required for the transversely isotropic material model. Yarns

geometry are modelled with elliptical cross-sections and cubic spline paths. The computational

framework is implemented within an open-source finite element code MOFEM (Mesh-Oriented

Finite Element Method). Two numerical examples are presented to demonstrate the imple-

mentation and performance of the developed computational framework.The first numerical

example is a 3D orthogonal woven composite with oversimplified yarns geometry consisting of

rectangular cross-section. Two different RVEs geometries are considered for the first numerical

example. The original RVE geometry has a lower fibre volume fraction of 31.0% while the mod-

ified geometry has a fibre volume fraction of 48.35%. The calculated homogenised mechanical

properties for both original and modified RVEs are compared with the results from literature.

As compared to the full RVE, homogenised properties obtained with the modified RVE are in

excellent agreement with the reference results. In the second numerical example, a detailed

comparison is made between the homogenised mechanical properties of 3D-textile composites

with 3D and 2.5D yarns architectures. It was shown that multiple factors including yarns ar-

chitecture and volume fraction contribute toward the homogenised mechanical properties and

therefore required a detailed computational modelling. Although, the proposed computational

framework, is used for the calculation of the homogenised mechanical properties of 3D-textile
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Figure 17: Representative volume element for 2.5D layer-layer angle interlock.

composites in this paper it is equally applicable to other composites with unidirectional and

2D-textile reinforcements. Moreover, in addition to the calculation of homogenised mechanical

properties, the proposed computational framework can also be used for the calculation of the

homogenised thermal and moisture transport properties.
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Appendix A. Relationship between mathematical and engineering constants

At macro/structural-level, 3D textile composites can be considered as homogeneous and or-

thotropic material. Relation between stress and strain for an orthotropic material model is
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Figure 18: Directions of fibres in the yarns for composites with 2.5D and 3D yarns architecture.

written as 

εxx

εyy

εzz

γxy
γyz
γzx


= S



σxx

σyy

σzz

τxy

τ yz

τ zx


, where S = C

−1
, (A.1)

24



1 2 3

5

6

7

8

9

10

11

12

13

1 2 3

4

4.5

5

5.5

6

6.5

7

7.5

(a) (b)

(c) (d)

(e) (f)

1 2 3

7

8

9

10

11

12

13

14

15

16

1 2 3

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

1 2 3

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

1 2 3

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Figure 19: Homogenised Young’s and shear moduli for composites with 2.5D and 3D yarns architecture.

here C and S are homogenised stiffness and compliance matrices respectively. For an orthotropic

material model, compliance matrix S is written as
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Figure 20: Homogenised Poisson’s ratios for composites with 2.5D and 3D yarns architecture.

S =



1
Exx

− νyx
Eyy

− νzx
Ezz

0 0 0

− νxy
Exx
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Eyy
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Ezz

0 0 0

− νxz
Exx

− νyz
Eyy

1
Ezz

0 0 0

0 0 0 1
Gxy

0 0

0 0 0 0 1
Gyz

0

0 0 0 0 0 1
Gzx


, (A.2)

where x, y and z are global coordinate axes associated with the 3D textile composites RVE.

With calculated homogenised stiffness matrix C , the three homogenised Young’s moduli are

calculated as

Exx =
1

S11

, Eyy =
1

S22

and Ezz =
1

S33

. (A.3)
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Similarly, the three homogenised shear moduli are written as

Gxy =
1

S44

, Gyz =
1

S55

and Gzx =
1

S66

, (A.4)

and, the three homogenised Poisson’s ratios are written as

νxy = −S21Exx, νxz = −S31Exx and νyz = −S32Eyy (A.5)

Finally, the symmetry of the compliance matrix S can be used to calculate Poisson’s ratios νyx,

νzx and νzy, i.e.
νyx
Eyy

=
νxy
Exx

,
νzx
Ezz

=
νxz
Exx

and
νzy
Ezz

=
νyz
Eyy

(A.6)

References

[1] L. Tong, A. P. Mouritz, M. K. Bannister, 3D Fibre Reinforced Polymer Composites, Else-

vier Science, Oxford, 2002.

[2] A. Mouritz, M. Bannister, P. Falzon, K. Leong, Review of applications for advanced three-

dimensional fibre textile composites, Composites Part A: Applied Science and Manufac-

turing 30 (12) (1999) 1445 – 1461.

[3] A. C. Long (Ed.), Design and manufacture of textile composites, Woodhead Publishing

Series in Textiles, Cambridge England, 2005.

[4] X. Tang, J. D. Whitcomb, Y. Li, H.-J. Sue, Micromechanics modeling of moisture diffusion

in woven composites, Composites Science and Technology 65 (6) (2005) 817 – 826.

[5] S. Buchanan, A. Grigorash, E. Archer, A. McIlhagger, J. Quinn, G. Stewart, Analytical

elastic stiffness model for 3D woven orthogonal interlock composites, Composites Science

and Technology 70 (11) (2010) 1597 – 1604.

[6] A. Hallal, R. Younes, F. Fardoun, S. Nehme, Improved analytical model to predict the

effective elastic properties of 2.5D interlock woven fabrics composite, Composite Structures

94 (10) (2012) 3009 – 3028.

[7] K. C. Warren, R. A. Lopez-Anido, J. Goering, Experimental investigation of three-

dimensional woven composites, Composites Part A: Applied Science and Manufacturing

73 (2015) 242 – 259.

[8] Y. Rahali, M. Assidi, I. Goda, A. Zghal, J. Ganghoffer, Computation of the effective me-

chanical properties including nonclassical moduli of 2.5D and 3D interlocks by microme-

27



chanical approaches, Composites Part B: Engineering 98 (Supplement C) (2016) 194 –

212.

[9] B. Sun, B. Gu, X. Ding, Compressive behavior of 3-D angle-interlock woven fabric com-

posites at various strain rates, Polymer Testing 24 (4) (2005) 447 – 454.

[10] J. Brandt, K. Drechsler, F.-J. Arendts, Mechanical performance of composites based on

various three-dimensional woven-fibre preforms, Composites Science and Technology 56 (3)

(1996) 381 – 386.

[11] D. Jetavat, Near net shape preforming by 3D weaving process, Ph.D. thesis, Textile Com-

posites Group, School of Materials, The University of Manchester (2012).

[12] S. Rudov-Clark, A. Mouritz, L. Lee, M. Bannister, Fibre damage in the manufacture of

advanced three-dimensional woven composites, Composites Part A: Applied Science and

Manufacturing 34 (10) (2003) 963 – 970.

[13] L. Lee, S. Rudov-Clark, A. Mouritz, M. Bannister, I. Herszberg, Effect of weaving damage

on the tensile properties of three-dimensional woven composites, Composite Structures

57 (1) (2002) 405 – 413.

[14] M. Ansar, W. Xinwei, Z. Chouwei, Modeling strategies of 3D woven composites: A review,

Composite Structures 93 (8) (2011) 1947 – 1963.

[15] F. Stig, 3D-woven reinforcement in composites, Ph.D. thesis, KTH School of Engineering

Sciences, Sweden (2012).

[16] S. Hallstrom, 3D-textile reinforcement in composites- mechanics, modelling, pros and cons,

in: 15th European Conference on Composite Materials, Venice, Italy, 24-28 June 2012.

[17] Z. Ullah,  L. Kaczmarczyk, S. Grammatikos, M. Evernden, C. Pearce, Multi-scale com-

putational homogenisation to predict the long-term durability of composite structures,

Computers & Structures 181 (2017) 21 – 31.

[18] Z. Ullah, L. Kaczmarczyk, C. Pearce, Three-dimensional nonlinear micro/meso-mechanical

response of the fibre-reinforced polymer composites, Composite Structures 161 (2017) 204

– 214.

[19] B. V. Sankar, R. V. Marrey, Analytical method for micromechanics of textile composites,

Composites Science and Technology 57 (6) (1997) 703 – 713.

[20] J.-M. Yang, C.-L. Ma, T.-W. Chou, Fiber inclination model of three-dimensional textile

structural composites, Journal of Composite Materials 20 (5) (1986) 472–484.

28



[21] R. A. Nalk, Analysis of woven and braided fabric reinforced composites., Tech. Rep. NASA

CR-194930, National Aeronautics and Space Administration, Washington, DC (1994).

[22] B. N. Cox, F. Gerry, Handbook of analytical methods for textile composites. hampton,

Tech. Rep. NASA Contractor Report 4750, National Aeronautics and Space Administra-

tion, Langley Research Center (1997).

[23] A. Hallal, R. Younes, F. Fardoun, Review and comparative study of analytical modeling

for the elastic properties of textile composites, Composites Part B: Engineering 50 (0)

(2013) 22 – 31.

[24] A. Kalamkarov, E. Hassan, A. Georgiades, M. Savi, Asymptotic homogenization model for

3D grid-reinforced composite structures with generally orthotropic reinforcements, Com-

posite Structures 89 (2) (2009) 186 – 196.

[25] A. E. Bogdanovich, Multi-scale modeling, stress and failure analyses of 3-D woven com-

posites, Journal of Materials Science 41 (20) (2006) 6547–6590.

[26] M. Rao, B. Sankar, G. Subhash, Effect of Z-yarns on the stiffness and strength of three-

dimensional woven composites, Composites Part B: Engineering 40 (6) (2009) 540 – 551.

[27] L. Li, P. Wen, M. Aliabadi, Meshfree modeling and homogenization of 3D orthogonal

woven composites, Composites Science and Technology 71 (15) (2011) 1777 – 1788.

[28] F. Stig, S. Hallström, A modelling framework for composites containing 3D reinforcement,

Composite Structures 94 (9) (2012) 2895 – 2901.

[29] B. Wucher, S. Hallström, D. Dumas, T. Pardoen, C. Bailly, P. Martiny, F. Lani, Noncon-

formal mesh-based finite element strategy for 3D textile composites, Journal of Composite

Materials 51 (16) (2017) 2315–2330.

[30] C. Zhang, J. Curiel-Sosa, T. Q. Bui, Comparison of periodic mesh and free mesh on

the mechanical properties prediction of 3D braided composites, Composite Structures 159

(2017) 667 – 676.

[31] T. Huang, Y. Gong, A multiscale analysis for predicting the elastic properties of 3D woven

composites containing void defects, Composite Structures 185 (2018) 401 – 410.

[32] M. H. Aliabadi (Ed.), Woven Composites, Vol. 6 of Computational and Experimental

Methods in Structures, Imperial College London, UK, 2015.

[33] O. Bacarreza, P. Wen, M. Aliabadi, Micromechanical modelling of textile composites, in:

Computational and Experimental Methods in Structures Volume-6 (Woven Composites),

Imperial College Press, London, UK, 2015, Ch. 1, pp. 1–74.

29



[34] N. V. De Carvalho, S. T. Pinho, Mechanical response and failure of 2D woven composites

under compression, in: Computational and Experimental Methods in Structures Volume-6

(Woven Composites), Imperial College Press, London, UK, 2015, Ch. 2, pp. 75–107.

[35] S. R. Hallett, S. D. Green, B. S. El Said, Modelling 3D woven composite preform defor-

mations, in: Computational and Experimental Methods in Structures Volume-6 (Woven

Composites), Imperial College Press, London, UK, 2015, Ch. 4, pp. 141–158.
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