4 research outputs found

    Controlling the electronic properties of van der Waals heterostructures by applying electrostatic design

    Get PDF
    Van der Waals heterostructures based on the heteroassembly of 2D materials represent a recently developed class of materials with promising properties especially for optoelectronic applications. The alignment of electronic energy bands between consecutive layers of these heterostructures crucially determines their functionality. In the present paper, relying on dispersion-corrected density-functional theory calculations, we present electrostatic design as a promising tool for manipulating this band alignment. The latter is achieved by inserting a layer of aligned polar molecules between consecutive transition-metal dichalcogenide (TMD) sheets. As a consequence, collective electrostatic effects induce a shift of as much as 0.3 eV in the band edges of successive TMD layers. Building on that, the proposed approach can be used to design electronically more complex systems, like quantum cascades or quantum wells, or to change the type of band lineup between type II and type I

    Imaging and manipulation of adsorbed Pb adatom structures on the Si(100) surface by noncontact atomic force microscopy

    Get PDF
    We performed imaging and manipulation of epitaxially grown Pb adatom structures on the Si(100) surface by noncontact atomic force microscopy (NC-AFM) in ultra-high-vacuum (UHV) and at cryogenic temperatures. We observe several distinct contrast modes during imaging, which we assign to termination of the scanning probe tip by either a single Si, or single Pb, atom, via quantitative comparison of atomic resolution force spectroscopy experiments with ab initio density functional theory (DFT) simulations. We show that the Pb adatom structures can be controllably manipulated via mechanochemical means and identify a novel semideterministic manipulation strategy that arises from the combination of low temperature operation and the asymmetric diffusion barriers present on the Si(100) surface

    van der Waals Interaction Activated Strong Electronic Coupling at the Interface between Chloro Boron-Subphthalocyanine and Cu(111)

    Get PDF
    In this article, we investigate the interface between shuttlecock-shaped chloro boron-subphthalocyanine molecules and the Cu(111) surface. We highlight how molecular planarization induced by van der Waals forces can fundamentally alter the interface properties and how it can enable a particularly strong hybridization between molecular and metal states. In our simulations, we start from a situation in which we disregard van der Waals forces and then introduce them gradually by rescaling the interaction parameter, thereby “pulling” the molecule toward the surface. This reveals two adsorption regimes with significantly different adsorption distances, molecular conformations, and adsorbate-induced changes of the work function. Notably, the above-mentioned massive hybridization of electronic states, also observed in photoelectron spectroscopy, is obtained solely for one of the regimes. We show that this regime is accessible only as a consequence of the planarization of the molecular backbone resulting from the van der Waals attraction between the molecule and the surface. The results of this study indicate that for certain metal–molecule combinations unusually strong interfacial electronic interactions can be triggered by van der Waals forces creating a situation that differs from the usually described cases of physisorptive and chemisorptive interactions

    Sticking with the Pointy End? Molecular Configuration of Chloro Boron-Subphthalocyanine on Cu(111)

    Get PDF
    In this combined low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) study, we investigate self-assembly of the dipolar nonplanar organic semiconductor chloro boron-subphthalocyanine (ClB-SubPc) on Cu(111). We observe multiple distinct adsorption configurations and demonstrate that these can only be understood by taking surface-catalyzed dechlorination into account. A detailed investigation of possible adsorption configurations and the comparison of experimental and computational STM images demonstrates that the configurations correspond to “Cl-up” molecules with the B–Cl moiety pointing toward the vacuum side of the interface, and dechlorinated molecules. In contrast to the standard interpretation of adsorption of nonplanar molecules in the phthalocyanine family, we find no evidence for “Cl-down” molecules where the B–Cl moiety would be pointing toward the Cu surface. We show computationally that such a configuration is unstable and thus is highly unlikely to occur for ClB-SubPc on Cu(111). Using these assignments, we discuss the different self-assembly motifs in the submonolayer coverage regime. The combination of DFT and STM is essential to gain a full atomistic understanding of the surface–molecule interactions, and our findings imply that phthalocyanines may undergo surface-catalyzed reactions hitherto not considered. Our results also indicate that care has to be taken when analyzing possible adsorption configurations of polar members of the phthalocyanine family, especially when they are adsorbed on comparably reactive surfaces like Cu(111)
    corecore