1,502 research outputs found

    Feedback Allocation For OFDMA Systems With Slow Frequency-domain Scheduling

    Get PDF
    We study the problem of allocating limited feedback resources across multiple users in an orthogonal-frequency-division-multiple-access downlink system with slow frequency-domain scheduling. Many flavors of slow frequency-domain scheduling (e.g., persistent scheduling, semi-persistent scheduling), that adapt user-sub-band assignments on a slower time-scale, are being considered in standards such as 3GPP Long-Term Evolution. In this paper, we develop a feedback allocation algorithm that operates in conjunction with any arbitrary slow frequency-domain scheduler with the goal of improving the throughput of the system. Given a user-sub-band assignment chosen by the scheduler, the feedback allocation algorithm involves solving a weighted sum-rate maximization at each (slow) scheduling instant. We first develop an optimal dynamic-programming-based algorithm to solve the feedback allocation problem with pseudo-polynomial complexity in the number of users and in the total feedback bit budget. We then propose two approximation algorithms with complexity further reduced, for scenarios where the problem exhibits additional structure.Comment: Accepted to IEEE Transactions on Signal Processin

    Text Document Classification: An Approach Based on Indexing

    Get PDF
    ABSTRACT In this paper we propose a new method of classifying text documents. Unlike conventional vector space models, the proposed method preserves the sequence of term occurrence in a document. The term sequence is effectively preserved with the help of a novel datastructure called ‘Status Matrix’. Further the corresponding classification technique has been proposed for efficient classification of text documents. In addition, in order to avoid sequential matching during classification, we propose to index the terms in Btree, an efficient index scheme. Each term in B-tree is associated with a list of class labels of those documents which contain the term. Further the corresponding classification technique has been proposed. To corroborate the efficacy of the proposed representation and status matrix based classification, we have conducted extensive experiments on various datasets. Original Source URL : http://aircconline.com/ijdkp/V2N1/2112ijdkp04.pdf For more details : http://airccse.org/journal/ijdkp/vol2.htm

    A New Feature Selection Method based on Intuitionistic Fuzzy Entropy to Categorize Text Documents

    Get PDF
    Selection of highly discriminative feature in text document plays a major challenging role in categorization. Feature selection is an important task that involves dimensionality reduction of feature matrix, which in turn enhances the performance of categorization. This article presents a new feature selection method based on Intuitionistic Fuzzy Entropy (IFE) for Text Categorization. Firstly, Intuitionistic Fuzzy C-Means (IFCM) clustering method is employed to compute the intuitionistic membership values. The computed intuitionistic membership values are used to estimate intuitionistic fuzzy entropy via Match degree. Further, features with lower entropy values are selected to categorize the text documents. To find the efficacy of the proposed method, experiments are conducted on three standard benchmark datasets using three classifiers. F-measure is used to assess the performance of the classifiers. The proposed method shows impressive results as compared to other well known feature selection methods. Moreover, Intuitionistic Fuzzy Set (IFS) property addresses the uncertainty limitations of traditional fuzzy set

    Experiencing Company's Popularity and Finding Correlation between Companies in Various Countries Using Facebook's Insight Data

    Get PDF
    AbstractThe aim of this research was to analyse and experience the various electronics company profiles in various countries using giant social media, Facebook. This analysis was performed with the Insight data of Facebook's page which provide 4 different count values named day, day_28, week and lifetime respectively. To analyze the company's performance in various countries, aggregation was performed to find total users in a country those are engaged with different Facebook pages. All these four counts were used to compare various companies popularity using various measures like Total Country in which people knows about Company, Top-K Country and Least-K country, Count Comparison, Country wise Standard Deviation, Correlation between two companies in a country. Analysis results proved that Samsung was more popular in most of the country compared to all other companies. These findings will definitely help the companies in improving their popularity in social media, which intern will improve their business

    Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    Get PDF
    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures

    Automatic Irony Detection using Feature Fusion and Ensemble Classifier

    Get PDF
    With the advent of micro-blogging sites, users are pioneer in expressing their sentiments and emotions on global issues through text. Automatic detection and classification of sentiments like sarcastic or ironic content in microblogging reviews is a challenging task. It requires a system that manages some kind of knowledge to interpret the sentiment expressed in text. The available approaches are quite limited in their capabilities and scope to detect ironic utterances present in the text. In this regards, the paper propose feature fusion to provide knowledge to the system by alternative sets of features obtained using linguistic and content based text features. The proposed work extracts five sets of linguistic features and fuses with features selected using two stages of a feature selection method. In order to demonstrate the effectiveness of the proposed method, we conduct extensive experimentation by selecting different feature subsets. The performances of the proposed method are evaluated using Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Decision Tree (DT) and ensemble classifiers. The experimental result shows the proposed approach significantly out-performs the conventional methods

    Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network

    Get PDF
    Cardio-vascular diseases are one of the foremost causes of mortality in today’s world. The prognosis for cardiovascular diseases is usually done by ECG signal, which is a simple 12-lead Electrocardiogram (ECG) that gives complete information about the function of the heart including the amplitude and time interval of P-QRST-U segment. This article recommends a novel approach to identify the location of thrombus in culprit artery using the Information Fuzzy Network (IFN). Information Fuzzy Network, being a supervised machine learning technique, takes known evidences based on rules to create a predicted classification model with thrombus location obtained from the vast input ECG data. These rules are well-defined procedures for selecting hypothesis that best fits a set of observations. Results illustrate that the recommended approach yields an accurateness of 92.30%. This novel approach is shown to be a viable ECG analysis approach for identifying the culprit artery and thus localizing the thrombus
    • …
    corecore