37 research outputs found

    Living in a Multi-Risk Chaotic Condition: Pandemic, Natural Hazards and Complex Emergencies

    No full text
    Humans are living in an uncertain world, with daily risks confronting them from various low to high hazard events, and the COVID-19 pandemic has created its own set of unique risks. Not only has it caused a significant number of fatalities, but in combination with other hazard sources, it may pose a considerably higher multi-risk. In this paper, three hazardous events are studied through the lens of a concurring pandemic. Several low-probability high-risk scenarios are developed by the combination of a pandemic situation with a natural hazard (e.g., earthquakes or floods) or a complex emergency situation (e.g., mass protests or military movements). The hybrid impacts of these multi-hazard situations are then qualitatively studied on the healthcare systems, and their functionality loss. The paper also discusses the impact of pandemic’s (long-term) temporal effects on the type and recovery duration from these adverse events. Finally, the concept of escape from a hazard, evacuation, sheltering and their potential conflict during a pandemic and a natural hazard is briefly reviewed. The findings show the cascading effects of these multi-hazard scenarios, which are unseen nearly in all risk legislation. This paper is an attempt to urge funding agencies to provide additional grants for multi-hazard risk research

    Soft Computing and Machine Learning in Dam Engineering

    No full text
    Dams have played a vital role in human civilization for thousands of years, providing vital resources such as water and electricity, and performing important functions such as flood control [...

    A series of forecasting models for seismic evaluation of dams based on ground motion meta-features

    No full text
    Uncertainty quantification (UQ) due to seismic ground motions variability is an important task in risk-informed condition assessment of infrastructures. Since performing multiple dynamic analyses is computationally expensive, it is valuable to develop a series of forecasting models based on the unique ground motion characteristics. This paper discusses the application of six different machine learning techniques on forecasting the structural behavior of gravity dams. Various time-, frequency-, and intensity-dependent characteristics are extracted from ground motion signals and used in machine learning. A large set of about 2000 real ground motions are used, each includes about 35 meta-features. The major outcome of this study is to show the applicability of meta-modeling-based UQ in seismic safety evaluation of dams. As an intermediary result, the advantages of different machine learning algorithms, as well as meta-feature selection possibility is discussed for the current dataset. This paper proposes a feasibility study to reduce the computational costs in UQ of large-scale infra-structural systems.Web of Science203art. no. 10965
    corecore