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A cost-effective neural network–based
damage detection procedure for
cylindrical equipment
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Abstract
This article presents a vibration-based technique for damage detection in the cylindrical equipment. First, a damage index
based on the residual frequency responses is defined. This technique uses the principal component analysis for data
reduction by eliminating the components that have the minimum contribution to the damage index. Then, the principal
components are fed into neural networks to identify the changes in the damage pattern. Furthermore, the efficiency of
this technique in the field condition is investigated by adding different noise levels to the output data. This study aims at
proposing a cost-effective damage detection model using only one sensor. Therefore, the optimal location of the sensor
is also discussed. A case study of capacitive voltage transformer is used for validation of finite element models. The
neural networks are trained using numerical data and tested with experimental one. Several parametric analyses are per-
formed to investigate the sensitivity of the model.
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Introduction

This article presents a vibration-based technique for
damage detection in the cylindrical equipment (e.g.
capacitive voltage transformer (CVT) equipment). The
power transmission substations are susceptible to dam-
age under seismic excitations.1 Figure 1 shows some of
the damaged equipment in Bam substation, Iran, dur-
ing the 2003 devastative Bam Earthquake.

Since the repair and replacing cost of those damaged
equipment is considerable, it is important to quantify
the damage level a priori and take the required actions
with respect to the damage severity. The process of
detecting and tracking the structural damage is known
as the structural health monitoring (SHM).3,4 The pres-
ence of a damage in a structural system alters its physi-
cal properties, which subsequently affects the dynamic
properties such as natural frequencies, mode shapes,

and modal damping. Therefore, the damage state of a
structure can be identified through examining its
dynamic parameters.5 Generally, the dynamic proper-
ties of a structure can be determined by evaluating its
time history responses, frequency response functions,
and modal parameters.6

Pattern recognition is a promising method for disco-
vering the structural damages.7 The basic idea of the
damage recognition based on a neural network (NN)
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relies on defining the damage index (DI) of the model
as an input for the NN, while the corresponding dam-
age scenario is defined as the target. The NN, trained
by fitting the features measured on the network inputs,
has the ability to estimate the damage conditions in the
structure.8

Many researchers have tried to identify the failures
in different structures using NN capabilities. Gonzalez-
Perez and Valdes-Gonzalez9 used an NN model to
identify the damages in vehicular bridges. They used
the modal strain energy to train the networks. Elshafey
et al.10 used the NN and random decrement technique
to obtain the free vibration of the system and examined
the damage in the laboratory model of a offshore struc-
ture. Tan et al.11 investigated the damage in simply
supported beams using an NN-based technique com-
bined with a modal strain energy-induced DI as an
input to the network. Zang et al.12 proposed a simple
method based on the structural response in time
domain and NN to detect the damage. Due to the large
amount of data in time domain as well as the noise
effects, they employed the independent component
analysis (ICA). Massari et al.13 investigated a method
based on the template matching to detect and locate
the damage in buildings following severe earthquake
shaking. Pakrashi et al.14 studied a statistical approach
on the detection of the presence, the location, and the
extent of an open crack from the first fundamental
mode shape of a simply supported beam. Sazonov and
Klinkhachorn15 investigated the analytical and numeri-
cal arguments to select the optimal mode shape sam-
pling interval to maximize sensitivity of damage
detection and the accuracy of damage localization. In a
very comprehensive research, Ghiasi et al.16 compared
several artificial intelligence techniques in damage
detection of truss structures including NN, support vec-
tor machines, adaptive neural-fuzzy inference system,
nearest neighbors, and extreme learning machine.

Application of the damage detection techniques in
vulnerability assessment of the equipment in electrical
industry is very limited. Yin et al.17 performed damage

detection of a transmission tower using ambient vibra-
tion test. They adopted a method to identify the struc-
tural mode shapes along with dynamic reduction
technique to detect the damage location. Lam and
Yin18 verified the method employed by Yin et al.17

through experimental tests and applied it to a 2.4-m-
high tower. They also investigated the sensor placement
and computational efficiency.

In the light of the previous studies, this article pro-
poses a method based on NN for damage detection in
cylindrical equipment. The method relies on principal
component analysis (PCA) to reduce the data size and
employs NN to detect the damage patterns. To exam-
ine the accuracy of the proposed method, different
damage scenarios are studied. Moreover, to evaluate
the performance of the method under the field condi-
tion, a white Gaussian noise with different intensities is
added to the structural response. In addition, this study
aims at detecting the structural damage in a very cost-
effective method by using only one sensor. Therefore,
the optimal location of the sensor plays an important
role on the accuracy of the results. Last but not least,
the method is applied to a small-scale experimental
model to evaluate its efficiency in detection of the dam-
age location and its severity. This technique can be
extended to the similar equipment and even nonstruc-
tural components.

Review of theoretical background

This section provides a very short review on the princi-
pals of the PCA and NN for the readers with these
techniques. It provides a smooth transition from theo-
retical formulations to the numerical and experimental
models.

PCA

PCA, developed by Jolliffe and Cadima19 and Bishop,20

is a technique that compresses the data linearly and is
widely used in image processing, flow visualization, pat-
tern recognition, and time-series prediction fields. In
fact, the process of extracting eigenvalues of the covar-
iance matrix of the data is the basis of this technique.
PCA is a statistical technique, which performs a dimen-
sion reduction on the variables space. Using this analy-
sis, the original set of variables in an N-dimensional
space is transformed into a new set of uncorrelated vari-
ables in a P-dimensional space where P\N.21

The following presents the procedure by which the
principal component for xij dataset is derived. First, the
mean value of the jth column, mj, and the correspond-
ing standard deviation, sj, are computed. Then, each
element of the dataset is normalized, ~xij =(xij � mj)=sj.
The covariance matrix is defined as
cov½ �= ½~x�T½~x�=n� 1, where n is the number of

Figure 1. Failure in electrical equipment during the Bam
earthquake: (a) porcelain parts and (b) leakage in capacitive
transformer.2
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measurements. Finally, the principal components are
simply obtained by solving the eigenvalue problem:
½cov�fEig= lifEig, where li is the ith eigenvalue and Ei

is the corresponding eigenvector.
The first principal component that has the highest

eigenvalue and the eigenvector associated with it indi-
cates the direction and the amount of maximum varia-
bility in the original data. The second principal
component, which is orthogonal to the first compo-
nent, indicates the next most significant contribution to
the original data and so on. By eliminating the compo-
nents with least contributions to the dataset, the data
size can be reduced effectively.21 The projection of the
response matrix on the r principal components is given
as follows

A½ �n 3 r = X½ �n 3 r E½ �n 3 r ð1Þ

The projection matrix, A, and the eigenvectors
matrix, l, can be divided into (1) p principal compo-
nents that have the highest contributions to the dataset
and (2) the remaining r � p least important principal
components. The choice of p is critical to successful
data compression. The value of p is determined by con-
sidering the contribution rate of each component, and
the effect of noise on components is determined
accordingly.

By eliminating r � p components, the reduced data
matrix is obtained as follows

~X R

� �
n 3 r

= A½ �1 3 p : 0½ �1 3 (r�p)

h i
E½ �r 3 p : 0½ �r 3 (r�p)

h iT

’ A½ �n 3 p E½ �Tp 3 r

ð2Þ

PCA is a powerful method to reduce the effects of
measurements noise on data. Since the measurements
noise has a random nature, there is no clear correlation
between noise and data. Therefore, deleting the compo-
nents with less contribution acts like a filter and reduces
the effect of noise on data.19

NN

NN is a powerful tool for pattern recognition and data
classification. The architecture of an NN comprises
four elements: (1) the number of layers (the neurons
are organized in groups called layers), (2) the number
of neurons in each layer, (3) the activation functions of
each layer, and (4) the training algorithm. The layers
are subsequently divided into output layers and hidden
layers. The output layers are associated with the NN
output, while the other layers are categorized as the
hidden layers.22

The number of neurons can vary between different
layers, and each neuron is an independent element. The
training algorithm is selected based on the bias and

final weight values of the NNs.23 The most commonly
used networks for damage detection are multi-layer
NNs coupled with the backpropagation algorithm.24

The output of a feed-forward network with s hidden
layers is given as follows

ak(p)=
Xs

j= 1

wkjf
Xd

i= 1

wjipi + bj0

 ! !
+ bk0 ð3Þ

where pi is the input, bj0 and bk0 are the bias para-
meters, wkj and wji are the inter-connection weights, d

is the number of input units, and f refers to the transfer
function. Note that each layer can have a different
transfer function. In this research, a nonlinear sigmoi-
dal transfer function is adopted for all the layers in the
form of

f (x)= (1+ e�x)�1 ð4Þ

The NN is trained to minimize errors on the training
dataset and also to maximize its accuracy when new
inputs are introduced to the network. For this purpose,
the ‘‘Bayesian regularization’’ algorithm is used in
which the weight and bias values are updated according
to Levenberg–Marquardt optimization technique. It
minimizes a combination of squared errors and weights
and then determines the correct combination to estab-
lish a generalized network.25,26

Methodology

In this research, a vibration-based method is proposed
for damage detection in CVTs. Methods based on fre-
quency response functions have been investigated in the
previous studies. In this research, a DI based on resi-
dual frequency response of the structure under impact
excitation is defined. The residual frequency response is
the difference between the intact and the damaged
structure.

This method is first implemented on a numerical
model. Then, the improved version is applied in the
field condition. The designed NN for the numerical
simulation is utilized for damage detection (both the
location and severity) of field dataset. Figure 2 illus-
trates the proposed damage detection algorithm.

Algorithm implementation

Numerical model

The first numerical model is a CVT developed in
SAP2000 program. The configuration of the system is
shown in Figure 3 as provided by the manufacturer. In
this model, the porcelain insulator, cement material,
and aluminum flanges are considered as eight-noded
solid elements with a maximum dimension of 0.02m.

Karami-Mohammadi et al. 3



Moreover, the oil tank is modeled using four-noded
shell elements with a maximum dimension of 0.05m.

The material properties of each part are summarized
in Table 1. The supporting structure consists of the steel
elements: the vertical members of the supporting struc-
ture are in L60 3 60 3 6 angles and the diagonal mem-
bers are in L40 3 40 3 4 angles. These properties are
based on the IEEE Standard-693 recommendations.
According to the IEEE recommendations, the damping
ratio of this equipment is assumed to be 2%. In order
to account for the oil mass inside the tank, as well as
the porcelain insulator, additional masses are symmetri-
cally added to the insulator and the tank walls.

The height and total mass of the porcelain insulator
and bottom flange are 2.4m and 330kg, respectively.
The similar parameters for the oil tank are 0.6m and
200kg, respectively. The total stiffness of the CVT is
2.81MN/m2. The natural frequency of the CVT (with-
out equipment support) is 8.95 and 8.90Hz according
to the equipment catalog and the finite element model,

respectively. Traditionally, the numerical model is veri-
fied by comparing its frequency response with experi-
mental one. In the current example, the first mode is
captured with only 0.6% error. One may note that for
cantilever-type structures, the first model is the domi-
nant one.

Damage scenarios and loading details

To examine the effectiveness of the proposed method,
different damage scenarios are considered as shown in
Figure 4. According to this plot, three damage severities
(denoted as D15%, D30%, and D50%) including 15%,
30%, and 50% element removal from the insulator are
considered. The width of the cracks is assumed to be
0.005m in all cases. Moreover, 18 damage locations
(shown as L01 to L18) are taken into account along the
height, with the distance of 0.12m from each other.
Finally, four damage angles (shown as a1 to a4) are
modeled along the perimeter. Therefore, a combination
of 3 3 18 3 4= 216 dataset is generated to train the
NN. Again, the goal is to detect the location and sever-
ity of the cracks occurred along the porcelain insulator.

In this section, only one sensor (located at the top of
the bottom aluminum flange) is used to record the
responses under the impact excitation. The ramp-type
impact load is applied at point A of structure as shown
in Figure 5, with the angle of 45� with respect to both
axes.

For each of the 216 damage scenario, there are two
frequency responses with the total duration of 2.0 s
recorded at 0.001 s time step in the horizontal and verti-
cal directions. For each damage scenario, the frequency

Figure 3. Capacitive voltage transformer system: (a) elements
and (b) support structure.2

Figure 2. Damage detection algorithm.
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response of the damaged structure is subtracted from
the one resulted from sound structure and is called the
residual frequency response. Overall, 216 averaged resi-
dual frequency responses are collected. Therefore, a
matrix of data with the size of 216 3 300 is formed, in

which 216 refers to the number of samples and 300 pre-
sents the sample size. Figure 6(a) shows the effect of
damage on the frequency response of the structure,
while the impact of different damage locations on the
residual responses is shown in Figure 6(b). As seen, the
location of peak residual responses corresponds to the
peak frequency responses in healthy and damaged
structures.

The PCA is performed on the data matrix and the
number of components used to train the NN is deter-
mined based on the contribution of each component
and the effect of noise on them. The remaining compo-
nents are used as the DI instead of the residual fre-
quency response to train the NNs.

According to Figure 7, it is clear that different dam-
age scenarios have different principal component pat-
terns. In general, lower locations provide higher
quantity for the principal components. Furthermore, a
more severe damage scenario leads to higher variation
in the principal component.

To detect the damage location and severity, NNs are
employed. The principal components of each damage
scenario are fed to the NN as DI. A sensitivity analysis
is performed to determine the minimum number of the
layers, as well as the number of the neurons in each
layer. The architecture of the NN can be summarized
as follows:

� Bayesian regularization is used as training
algorithm.

� Sigmoid transfer function is used for all the
layers.

� There are three layers in the models.
� A total of 10 principal components are used in

each case.
� There are 14 and 3 neurons in first layer if the

target is damage location and damage severity,
respectively.

� There are 6 and 3 neurons in second layer if the
target is damage location and damage severity,
respectively.

It should be noted that the simple hold-out technique
is used to generalize the trained networks.

Figure 4. Illustration of the damage severity, location, and
angle.

Figure 5. Illustration of the impact location, angle, recording
directions, and loading details.

Table 1. Material properties of each element in CVT; g: specific weight and E: modulus of elasticity.

Name Element type Properties g (kgf cm) E (kgf cm)

Leg Elastic Steel 7.85E203 2.10E+ 06
Oil tank Shell Aluminum 7.50E203 7.04E+ 05
Flange Shell Aluminum 2.70E203 7.04E+ 05
Cement Shell Special cement 7.85E203 2.50E+ 05
Porcelain Solid Porcelain 5.48E203 7.10E+ 05

CVT: capacitive voltage transformer.

Karami-Mohammadi et al. 5



The networks are fed with the principal components
of each damage scenario and are trained to detect the
damage location and severity by determining the target
function and trying different sets of network para-
meters. The normalized error, Errnorm, criterion is used
to evaluate the performance of the trained networks.
This criterion is expressed as follows

Errb
norm =

Pn
i= 1

NO�NTj ji
bmax

n
3 100% ð5Þ

where NO and NT refer to the network output and tar-
get, respectively; bmax might take one of the following
forms depending on whether it is used for location or
severity damage detection: Lmax (length of the insulator)
or Dmax (maximum severity); and finally, n is the size of
the data.

During the training process, for each scenario, 10
networks are used to reduce the uncertainties associated
with damage detection. The average normalized error is
0.182% and 0.021% for the location and severity detec-
tion, respectively. To evaluate the performance of the
trained NNs, four new damage scenarios are defined,
which were not included in the training step, and the
results of the damage detection are reported in Table 2.
In the first three scenarios, the objective is to predict the
unknown damage location with a fixed damage severity
value (i.e. 15%). One should note that 15% is the lower
bound for damage severity training (i.e. (15%, 50%))
and thus is considered as a worst-case scenario. It is
expected that the performance of the system will get
better for higher damage severity percentages. As seen,
the error of predicted damage severity is zero, and those
from unknown locations are pretty negligible.

In scenario 4, both the damage location and its
severity are assumed to be unknown simultaneously.
The target location and severity are set to 114 cm
(which is between 108 and 120 cm points) and 25%

Table 2. Evaluation of trained neural networks.

Scenario Target NT NO Errnorm

1 Location 18 cm 18.71 cm 0.32%
Severity 15% 15% 0

2 Location 90 cm 90.18 cm 0.08%
Severity 15% 15% 0

3 Location 150 cm 151.32 cm 0.60%
Severity 15% 15% 0

4 Location 114 cm 110.22 cm 1.80%
Severity 25% 22% 3%

NO: network output; NT: network target.

Scenario 4 is based on 10% noise.

(a) (b)

Figure 6. Effects of light damage on vibration response: (a) frequency response at L12 and (b) residual responses at different
locations.

(a) (b)

Figure 7. Variation of the first 10 principal components for
different damage scenarios: (a) impact of location; all small
damage and (b) impact of severity; all L09 damage.

6 Advances in Mechanical Engineering



(which is between 15% and 30% damage), respectively.
For this combined scenario, the developed NN predicts
the location and severity with 1.8% and 3.0% errors,
respectively (see Table 2).

Noise effect

To account for the field condition, a white Gaussian
noise is added to the structural responses. Three noise-
to-signal ratios of 2%, 5%, and 10% are generated to

evaluate the model sensitivity. The noise has a random
nature and affects all the components including those
with less significance. Therefore, by eliminating the low
contribution components, the effect of noise on the
accuracy of the results is decreased. To determine the
number of principal components which are not affected
by the noise (for each noise level), the noise is itera-
tively added to the responses multiple times and the
PCA is performed for each case. The components
which demonstrate the highest variations are elimi-
nated from the computations. This operation is shown
in Figure 8 for a scenario in which the damage occurs
on L09.

Figure 8(a) presents the case where no noise is intro-
duced to the model. As a result, this is a deterministic
curve for the idealized condition. Figure 8(b) presents
the first 10 components of the structure with 2% noise.
Since the noise does not practically have any effect on
the first 10 components, all of them are used to train
the NNs. According to Figure 8(c), the first five compo-
nents are not affected in the case of adding 5% noise to
the system. Thus, only the first five components are
selected in the training process, and the others are elimi-
nated. Finally, the impact of 10% noise is shown in
Figure 8(d), and only the first four components are used
for NN training. It is noteworthy that to evaluate the
trained NNs, three damage scenarios are assumed and
the results are reported in Table 3. The goodness of fit
for both the train and test data is shown in Figure 9 for
the model with 10% noise (worst-case scenario).

Optimal sensor location

Since only one sensor is used to detect the location and
the severity of the damage, it is necessary to determine
an optimal location which yields the least error. For

(a) (b)

(c) (d)

Figure 8. Uncertainty in principal components with different
noise ratios; results are at L09: (a) without noise, (b) 2% noise,
(c) 5% noise, and (d) 10% noise.

Table 3. Evaluation of trained neural networks including noise effects.

Noise Scenario Target NT NO Errnorm

2% 1 Location 18 cm 18.97 cm 0.44%
Severity 15% 15% 0

2 Location 90 cm 91.05 cm 0.47%
Severity 15% 15% 0

3 Location 150 cm 149.05 cm 0.43%
Severity 15% 15% 0

5% 1 Location 18 cm 19.10 cm 0.50%
Severity 15% 15% 0

2 Location 90 cm 91.25 cm 0.57%
Severity 15% 15% 0

3 Location 150 cm 148.58 cm 0.65%
Severity 15% 15% 0

10% 1 Location 18 cm 24.12 cm 2.78%
Severity 15% 15% 0

2 Location 90 cm 96.32 cm 2.87%
Severity 15% 15% 0

3 Location 150 cm 159.32 cm 4.32%
Severity 15% 15% 0

Karami-Mohammadi et al. 7



this purpose, five different locations along the height of
insulator are selected with a uniform distance of 50 cm.
They roughly corresponded to L01, L05, L09, L13 (of
L14), and L18 in Figure 4.

For each damage scenario, and each noise level, the
normalized error of the training data is calculated, and
the location with the minimum Errnorm is selected as an
optimal place for the sensor. For each sensor location
and each noise level, 10 networks are trained and the
sum of the Errnorm from all the networks is used as an
index to evaluate the optimality of the location. The
Errnorm for each sensor location and each noise level is
shown in Figure 10. Obviously, higher noise increases
the normalized error. Shown in this plot is also the
mean value of different noise levels for each location.
Overall, L05 seems to be the optimal location for sen-
sor location.

Experimental test setup

The proposed method in the previous sections is exam-
ined through an experimental program. For this pur-
pose, a similar structure to the numerical model of
CVT is built by the authors (Figure 11(a)). The struc-
ture is made up of an U-PVC pipe which is connected
to a rigid base with four bolts, a steel pipe, and a steel

sheet. The space between the U-PVC pipe and the steel
pipe is filled with cement. Diameter and thickness of
the U-PVC pipe are 0.125m and 0.0032m, respectively.
The height of the U-PVC pipe is 1.31m.

Model updating technique is used to obtain modulus
of elasticity of the U-PVC pipe. For this purpose, the
numerical model of this structure is established in
SAP2000 (Figure 11(b)). The body of the U-PVC pipe
is modeled with shell elements. The natural frequency
of the first mode of the structure is considered as the
target parameter in the model updating process. Using
this method, the modulus of elasticity of the U-PVC
pipe is obtained as 496,200kg/cm2. Since the connec-
tion to the base is not completely rigid, some transla-
tional and rotational springs are used in the numerical
model to connect the structure to the base. In addition,
using the aforementioned method to model the base
connection improves the accuracy of the numerical
model in higher modes of vibration. Natural frequen-
cies of the numerical and the experimental models are
compared in Table 4.

In this study, the structure is excited with a pendu-
lum thrown from a specified height. It hits the structure
at a distance of 0.1m from the bottom of the U-PVC
pipe. A series of ‘‘Kyowa AS-5GB’’ sensors are used to
record the response of the structure. These sensors are
installed at a distance of 0.15m from the top of the
U-PVC pipe. The recording sample rate is considered
1000Hz. The NN training is performed with 23 dam-
age locations along the U-PVC pipe uniformly distribu-
ted at 0.05m distance from each other. In each damage

Figure 10. Optimal sensor location considering noise effect.

Figure 11. CVT models: (a) experimental, (b) FE, and (c) three
damage scenarios.

Figure 9. NN-based goodness of fit for train and test data; the
case with 10% noise.
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location, three damage severities including small,
medium, and high are implemented.

In the case of small damage, the elements of the
structure with 0.022m length and 0.0025m width are
removed. In damage with medium severity, the ele-
ments with 0.044 cm length and 0.0025m width are
removed, and finally for severe damage, the elements
with 0.066m length and 0.0025m width are removed.
Note that each damage scenario is considered to occur
in four angles around the structure. Therefore, the total
number of NN inputs is 4 3 3 3 23= 276. It should be
noted that the NNs are trained with numerical models
and tested with experimental data. To evaluate the per-
formance of the trained NN, three damage scenarios
are assumed. A damage with the length of 0.022, 0.044,
and 0.066 and 0.0025m width is formed at a distance
of 0.27m from the bottom of the U-PVC pipe (Figure
11(c)).

In this study, a three-layer feed-forward NN with six
neurons in its first and second hidden layers is used.
The transfer function of all the layers is set to ‘‘tansig.’’
To take into account the uncertainties associated with
the NN training, a number of 50 sample networks are
considered for each damage scenario. The results of the
damage detection in the first, second, and third scenar-
ios are shown in Figure 12.

Figure 12(a) presents the kernel distribution of three
scenarios. This is a nonparametric representation of the
probability density function of a random variable27

and is used when a parametric distribution cannot
properly describe the data or to avoid making

assumptions about the distribution of the data.
Scenarios 2 and 3 have a close peak (i.e. 0.249 and
0.229m distance from the bottom of the PVC pipe,
respectively), while scenario 1 has its peak at about
0.309m. In addition, the empirical cumulative density
function is shown in Figure 12(b). Again, scenarios 2
and 3 are close, while scenario 1 has a gap between the
range of (0.2, 0.4)m. Finally, regardless of the damage
severity, its location is detected with a good accuracy.

Conclusion

In this article, a vibration-based method to detect the
damage location and its severity in CVTs is presented.
The method uses the PCA on residual frequency
response functions of the structure under impact excita-
tion and employs NNs to find damage patterns. To
examine the effectiveness of the proposed method
under field condition, the white Gaussian noise with
different scattering is added to the structural response.
Based on the analysis results, the method provides
fairly accurate results under various conditions.

Furthermore, the accuracy of the damage detection
highly depends on the sensor location. Therefore, a part
of this study is dedicated to determine the optimal sen-
sor location. This provides a cost-effective method to
be used in real-world problems of experimental damage
detection. Finally, the presented method is examined
through an experiment program, and it is shown that
the proposed method is effective in damage detection of

(a) (b)

Figure 12. Damage detection in experimental program: (a) Kernel distribution model and (b) empirical cumulative density function.

Table 4. Comparison of the natural frequencies of experimental and numerical models.

Mode Numerical (Hz) Experimental (Hz) Error (%)

1 25.49 25.49 Hz 0.00
2 134.10 134.01 Hz 0.06
3 196.80 198.17 Hz 0.69
4 241.10 240.41 Hz 0.29

Karami-Mohammadi et al. 9



the pipe-type structure. In general, both the location
and severity can be estimated though this technique.
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