634 research outputs found
Contrasting Factors on the Kinetic Path to Protein Complex Formation Diminish the Effects of Crowding Agents
AbstractThe crowded environment of cells poses a challenge for rapid protein-protein association. Yet, it has been established that the rates of association are similar in crowded and in dilute solutions. Here we probe the pathway leading to fast association between TEM1 β-lactamase and its inhibitor protein BLIP in crowded solutions. We show that the affinity of the encounter complex, the rate of final complex formation, and the structure of the transition state are similar in crowded solutions and in buffer. The experimental results were reproduced by calculations based on the transient-complex theory for protein association. Both experiments and calculations suggest that while crowding agents decrease the diffusion constant of the associating proteins, they also induce an effective excluded-volume attraction between them. The combination of the two opposing effects thus results in nearly identical overall association rates in diluted and crowded solutions
Nitrous Oxide sedation for intra-articular injection in juvenile idiopathic arthritis
<p>Abstract</p> <p>Background</p> <p>Intra-articular corticosteroid injection in juvenile idiopathic arthritis (JIA) is often associated with anxiety and pain. Recent reports advocate the use of nitrous oxide (NO), a volatile gas with analgesic, anxiolytic and sedative properties.</p> <p>Objective</p> <p>To prospectively evaluate the effectiveness and safety of NO analgesia for intra-articular corticosteroid injection in JIA, and to assess patients and staff satisfaction with the treatment.</p> <p>Methods</p> <p>NO was administered to JIA patients scheduled for joint injection. The patient, parent, physician and nurse completed visual-analog scores (VAS) (0–10) for pain, and a 5-point satisfaction scale. Change in heart rate (HR) during the procedure was recorded in order to examine physiologic response to pain and stress. Patient's behavior and adverse reactions were recorded.</p> <p>Results</p> <p>54 procedures (72 joints) were performed, 41 females, 13 males; 39 Jewish, 13 Arab; mean age was 12.2 ± 4.7 year. The median VAS pain score for patients, parents, physicians and nurses was 3. The HR increased ≥ 15% in 10 patients. They had higher VAS scores as evaluated by the staff. The median satisfaction level of the parents and staff was 3.0 and 5.0 respectively. Adverse reactions were mild.</p> <p>Conclusion</p> <p>NO provides effective and safe sedation for JIA children undergoing intra-articular injections.</p
Breast Cancer-Derived Microparticles Reduce Cancer Cell Adhesion, an Effect Augmented by Chemotherapy
Tumor cell heterogeneity is primarily dictated by mutational changes, sometimes leading to clones that undergo a metastatic switch. However, little is known about tumor heterogeneity following chemotherapy perturbation. Here we studied the possible involvement of tumor-derived extracellular vesicles, often referred to as tumor-derived microparticles (TMPs), as mediators of the metastatic switch in the tumor microenvironment by hindering cell adhesion properties. Specifically, we show that highly metastatic or chemotherapy-treated breast cancer cells shed an increased number of TMPs compared to their respective controls. We found that these TMPs substantially reduce cell adhesion and disrupt actin filament structure, therefore increasing their biomechanical force pace, further implicating tumor cell dissemination as part of the metastatic cascade. Our results demonstrate that these pro-metastatic effects are mediated in part by CD44 which is highly expressed in TMPs obtained from highly metastatic cells or cells exposed to chemotherapy when compared to cells with low metastatic potential. Consequently, when we inhibited CD44 expression on TMPs by a pharmacological or a genetic approach, increased tumor cell adhesion and re-organized actin filament structure were observed. We also demonstrated that breast cancer patients treated with paclitaxel chemotherapy exhibited increased CD44-expressing TMPs. Overall, our study provides further insights into the role of TMPs in promoting metastasis, an effect which is augmented when tumor cells are exposed to chemotherapy
The landscape of tiered regulation of breast cancer cell metabolism
Altered metabolism is a hallmark of cancer, but little is still known about its regulation. In this study, we measure transcriptomic, proteomic, phospho-proteomic and fluxomics data in a breast cancer cell-line (MCF7) across three different growth conditions. Integrating these multiomics data within a genome scale human metabolic model in combination with machine learning, we systematically chart the different layers of metabolic regulation in breast cancer cells, predicting which enzymes and pathways are regulated at which level. We distinguish between two types of reactions, directly and indirectly regulated. Directly-regulated reactions include those whose flux is regulated by transcriptomic alterations (~890) or via proteomic or phospho-proteomics alterations (~140) in the enzymes catalyzing them. We term the reactions that currently lack evidence for direct regulation as (putative) indirectly regulated (~930). Many metabolic pathways are predicted to be regulated at different levels, and those may change at different media conditions. Remarkably, we find that the flux of predicted indirectly regulated reactions is strongly coupled to the flux of the predicted directly regulated ones, uncovering a tiered hierarchical organization of breast cancer cell metabolism. Furthermore, the predicted indirectly regulated reactions are predominantly reversible. Taken together, this architecture may facilitate rapid and efficient metabolic reprogramming in response to the varying environmental conditions incurred by the tumor cells. The approach presented lays a conceptual and computational basis for mapping metabolic regulation in additional cancers
The α/β hydrolase fold
We have identified a new protein fold-the α/β hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an α/β sheet, not barrel, of eight β-sheets connected by α-helices. These enzymes have diverged from a common ancestor so as to preserve the arrangement of the catalytic residues, not the binding site. They all have a catalytic triad, the elements of which are borne on loops which are the best-conserved structural features in the fold. Only the histidine in the nucleophile-histidine-acid catalytic triad is completely conserved, with the nucleophile and acid loops accommodating more than one type of amino acid. The unique topological and sequence arrangement of the triad residues produces a catalytic triad which is, in a sense, a mirror-image of the serine protease catalytic triad. There are now four groups of enzymes which contain catalytic triads and which are related by convergent evolution towards a stable, useful active site: the eukaryotic serine proteases, the cysteine proteases, subtilisins and the α/β hydrolase fold enzymes
Adaptive immune response to BNT162b2 mRNA vaccine in immunocompromised adolescent patients
Protective immunity against COVID-19 is orchestrated by an intricate network of innate and adaptive anti-viral immune responses. Several vaccines have been rapidly developed to combat the destructive effects of COVID-19, which initiate an immunological cascade that results in the generation of neutralizing antibodies and effector T cells towards the SARS-CoV-2 spike protein. Developing optimal vaccine-induced anti-SARS- CoV-2 protective immunity depends on a fully competent immune response. Some evidence was gathered on the effects of vaccination outcomes in immunocompromised adult individuals. Nonetheless, protective immunity elicited by the Pfizer Biontech BNT162b2 vaccine in immunocompromised adolescents received less attention and was mainly focused on the antibody response and their neutralization potential. The overall immune response, including T-cell activities, was largely understudied. In this study, we characterized the immune response of vaccinated immunocompromised adolescents. We found that immunocompromised adolescents, which may fail to elicit a humoral response and develop antibodies, may still develop cellular T-cell immunity towards SARS-CoV-2 infections. Furthermore, most immunocompromised adolescents due to genetic disorders or drugs (Kidney and liver transplantation) still develop either humoral, cellular or both arms of immunity towards SARS-CoV-2 infections. We also demonstrate that most patients could mount a cellular or humoral response even after six months post 2nd vaccination. The findings that adolescents immunocompromised patients respond to some extent to vaccination are promising. Finally, they question the necessity for additional vaccination boosting regimens for this population who are not at high risk for severe disease, without further testing of their post-vaccination immune status
3-D struktura serumske paraoksonaze 1 objašnjava njezinu aktivnost, stabilnost, topljivost i kristalizaciju
Serum paraoxonases (PONs) exhibit a wide range of physiologically important hydrolytic activities, including drug metabolism and detoxification of nerve gases. PON1 and PON3 reside on high-density lipoprotein (HDL) (the “good cholesterol”), and are involved in the alleviation of atherosclerosis. Members of the PON family have been identified not only in mammals and other vertebrates, but also in invertebrates. We earlier described the first crystal structure of a PON family member, a directly-evolved variant of PON1, at 2.2 Å resolution. PON1 is a 6-bladed beta-propeller with a unique active-site lid which is also involved in binding to HDL. The 3-D structure, taken together with directed evolution studies, permitted analysis of mutations which enhanced the stability, solubility and crystallizability of this PON1 variant. The structure permits a detailed description of PON1’s active site and suggests possible mechanisms for its catalytic activity on certain substrates.Serumske paraoksonaze (PONs) imaju široki raspon fiziološki važnih hidrolitičkih aktivnosti uključujući metabolizam lijekova i detoksikaciju nervnih plinova. PON1 i PON3 smještene su na lipoproteinima visoke gustoće (engl. high-density lipoprotein; HDL - “dobri kolesterol”) i uključene su u ublažavanje ateroskleroze. Članovi skupine PON identificirani su ne samo u sisavaca i drugih kralježnjaka već i kod beskralješnjaka. Prije smo opisali prvu kristalnu strukturu člana PON skupine, direktno razrađenu varijantu PON1 pri rezoluciji 2,2 Å. PON1 je beta-propeler sa šest lopatica s jedinstvenim poklopcem aktivnog mjesta, koji je tako|er uključen u vezanje na HDL. 3-D struktura, gledana zajedno s direktnim razvojnim istraživanjima, omogućila je analizu mutacija koje povećavaju stabilnost, topljivost i kristalizaciju te PON1 varijante. Struktura dopušta detaljan opis aktivnog mjesta PON1 i sugerira moguće mehanizme za njezinu katalitičku aktivnost prema odre|enim supstratima
Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder
Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy. Lossos et al. describe a family with an early-onset Pelizaeus-Merzbacher disease-like phenotype that slowly evolves into complicated hereditary spastic paraplegia, affecting both the CNS and PNS. Exome sequencing reveals a causative homozygous missense mutation in MAG, which encodes myelin associated glycoprotei
EVEREST: automatic identification and classification of protein domains in all protein sequences
BACKGROUND: Proteins are comprised of one or several building blocks, known as domains. Such domains can be classified into families according to their evolutionary origin. Whereas sequencing technologies have advanced immensely in recent years, there are no matching computational methodologies for large-scale determination of protein domains and their boundaries. We provide and rigorously evaluate a novel set of domain families that is automatically generated from sequence data. Our domain family identification process, called EVEREST (EVolutionary Ensembles of REcurrent SegmenTs), begins by constructing a library of protein segments that emerge in an all vs. all pairwise sequence comparison. It then proceeds to cluster these segments into putative domain families. The selection of the best putative families is done using machine learning techniques. A statistical model is then created for each of the chosen families. This procedure is then iterated: the aforementioned statistical models are used to scan all protein sequences, to recreate a library of segments and to cluster them again. RESULTS: Processing the Swiss-Prot section of the UniProt Knoledgebase, release 7.2, EVEREST defines 20,230 domains, covering 85% of the amino acids of the Swiss-Prot database. EVEREST annotates 11,852 proteins (6% of the database) that are not annotated by Pfam A. In addition, in 43,086 proteins (20% of the database), EVEREST annotates a part of the protein that is not annotated by Pfam A. Performance tests show that EVEREST recovers 56% of Pfam A families and 63% of SCOP families with high accuracy, and suggests previously unknown domain families with at least 51% fidelity. EVEREST domains are often a combination of domains as defined by Pfam or SCOP and are frequently sub-domains of such domains. CONCLUSION: The EVEREST process and its output domain families provide an exhaustive and validated view of the protein domain world that is automatically generated from sequence data. The EVEREST library of domain families, accessible for browsing and download at [1], provides a complementary view to that provided by other existing libraries. Furthermore, since it is automatic, the EVEREST process is scalable and we will run it in the future on larger databases as well. The EVEREST source files are available for download from the EVEREST web site
Application of a Static Fluorescence-based Cytometer (the CellScan) in Basic Cytometric Studies, Clinical Pharmacology, Oncology and Clinical Immunology
The CellScan apparatus is a laser scanning cytometer enabling repetitive
fluorescence intensity (FI) and polarization (FP) measurements in living cells, as
a means of monitoring lymphocyte activation. The CellScan may serve as a tool for
diagnosis of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) as
well as other autoimmune diseases by monitoring FP changes in peripheral blood
lymphocytes (PBLs) following exposure to autoantigenic stimuli. Changes in FI and
FP in atherosclerotic patients' PBLs following exposure to various stimuli have
established the role of the immune system in atherosclerotic disease. The CellScan
has been evaluated as a diagnostic tool for drug-allergy, based on FP reduction in
PBLs following incubation with allergenic drugs. FI and FP changes in cancer cells
have been found to be well correlated with the cytotoxic effect of anti-neoplastic
drugs. In conclusion, the CellScan has a variety of
applications in cell biology, immunology, cancer research and clinical pharmacology
- …