11,165 research outputs found

    Cryogenic masers

    Get PDF
    Various factors affecting the frequency stability of hydrogen masers are described and related to maser design parameters. The long-term frequency stability of a hydrogen maser is limited by the mechanical stability of the cavity, and the magnitudes of the wall relaxation, spin exchange, and recombination rates which affect the Q of the line. Magnetic resonance studies of hydrogen atoms at temperatures below 1 K and in containers coated with liquid helium films demonstrated that cryogenic masers may allow substantial improvements in all of these parameters. In particular the thermal expansion coefficients of most materials are negligible at 1 K. Spin exchange broadening is three orders of magnitude smaller at 1 K than at room temperature, and the recombination and wall relaxation rates are negligible at 0.52 K where the frequency shift due to the 4 He-coated walls of the container has a broad minimum as a function of temperature. Other advantages of the helium-cooled maser result from the high purity, homogeneity, and resilence of helium-film-coated walls and the natural compatibility of the apparatus with helium-cooled amplifiers

    The devil in the deep: Expanding the known habitat of a rare and protected fish

    Get PDF
    The accepted geographic range of a species is related to both opportunity and effort in sampling that range. In deepwater ecosystems where human access is limited, the geographic ranges of many marine species are likely to be underestimated. A chance recording from baited cameras deployed on deep uncharted reef revealed an eastern blue devil fish (Paraplesiops bleekeri) at a depth of 51 m and more than 2 km further down the continental shelf slope than previously observed. This is the first verifiable observation of eastern blue devil fish, a protected and endemic southeastern Australian temperate reef species, at depths greater than the typically accepted depth range of 30 m. Knowledge on the ecology of this and many other reef species is indeed often limited to shallow coastal reefs, which are easily accessible by divers and researchers. Suitable habitat for many reef species appears to exist on deeper offshore reefs but is likely being overlooked due to the logistics of conducting research on these often uncharted habitats. On the basis of our observation at a depth of 51 m and observations by recreational fishers catching eastern blue devil fishes on deep offshore reefs, we suggest that the current depth range of eastern blue devil fish is being underestimated at 30 m. We also observed several common reef species well outside of their accepted depth range. Notably, immaculate damsel (Mecaenichthys immaculatus), red morwong (Cheilodactylus fuscus), mado (Atypichthys strigatus), white-ear (Parma microlepis) and silver sweep (Scorpis lineolata) were abundant and recorded in a number of locations at up to a depth of at least 55 m. This underestimation of depth potentially represents a large area of deep offshore reefs and micro habitats out on the continental shelf that could contribute to the resilience of eastern blue devil fish to extinction risk and contribute to the resilience of many reef species to climate change

    NMR evidence for Friedel-like oscillations in the CuO chains of ortho-II YBa2_2Cu3_3O6.5_{6.5}

    Full text link
    Nuclear magnetic resonance (NMR) measurements of CuO chains of detwinned Ortho-II YBa2_2Cu3_3O6.5_{6.5} (YBCO6.5) single crystals reveal unusual and remarkable properties. The chain Cu resonance broadens significantly, but gradually, on cooling from room temperature. The lineshape and its temperature dependence are substantially different from that of a conventional spin/charge density wave (S/CDW) phase transition. Instead, the line broadening is attributed to small amplitude static spin and charge density oscillations with spatially varying amplitudes connected with the ends of the finite length chains. The influence of this CuO chain phenomenon is also clearly manifested in the plane Cu NMR.Comment: 4 pages, 3 figures, refereed articl

    Spreading with evaporation and condensation in one-component fluids

    Full text link
    We investigate the dynamics of spreading of a small liquid droplet in gas in a one-component simple fluid, where the temperature is inhomogeneous around 0.9Tc and latent heat is released or generated at the interface upon evaporation or condensation (with Tc being the critical temperature). In the scheme of the dynamic van der Waals theory, the hydrodynamic equations containing the gradient stress are solved in the axisymmetric geometry. We assume that the substrate has a finite thickness and its temperature obeys the thermal diffusion equation. A precursor film then spreads ahead of the bulk droplet itself in the complete wetting condition. Cooling the substrate enhances condensation of gas onto the advancing film, which mostly takes place near the film edge and can be the dominant mechanism of the film growth in a late stage. The generated latent heat produces a temperature peak or a hot spot in the gas region near the film edge. On the other hand, heating the substrate induces evaporation all over the interface. For weak heating, a steady-state circular thin film can be formed on the substrate. For stronger heating, evaporation dominates over condensation, leading to eventual disappearance of the liquid region.Comment: 12 pages, 14 figure

    Diffusion of Nonequilibrium Quasiparticles in a Cuprate Superconductor

    Full text link
    We report a transport study of nonequilibrium quasiparticles in a high-Tc cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at photon energy 1.5 eV) was used to introduce a spatially periodic density of quasiparticles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasiparticle diffusion coefficient, and both inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurement of quasiparticle dynamics, not only in cuprate superconductors, but in other electronic systems as well.Comment: 5 pages, 4 figure

    A Simple Algorithm for Local Conversion of Pure States

    Get PDF
    We describe an algorithm for converting one bipartite quantum state into another using only local operations and classical communication, which is much simpler than the original algorithm given by Nielsen [Phys. Rev. Lett. 83, 436 (1999)]. Our algorithm uses only a single measurement by one of the parties, followed by local unitary operations which are permutations in the local Schmidt bases.Comment: 5 pages, LaTeX, reference adde

    Towards Quantum Gravity: A Framework for Probabilistic Theories with Non-Fixed Causal Structure

    Get PDF
    General relativity is a deterministic theory with non-fixed causal structure. Quantum theory is a probabilistic theory with fixed causal structure. In this paper we build a framework for probabilistic theories with non-fixed causal structure. This combines the radical elements of general relativity and quantum theory. The key idea in the construction is physical compression. A physical theory relates quantities. Thus, if we specify a sufficiently large set of quantities (this is the compressed set), we can calculate all the others. We apply three levels of physical compression. First, we apply it locally to quantities (actually probabilities) that might be measured in a particular region of spacetime. Then we consider composite regions. We find that there is a second level of physical compression for the composite region over and above the first level physical compression for the component regions. Each application of first and second level physical compression is quantified by a matrix. We find that these matrices themselves are related by the physical theory and can therefore be subject to compression. This is the third level of physical compression. This third level of physical compression gives rise to a new mathematical object which we call the causaloid. From the causaloid for a particular physical theory we can calculate verything the physical theory can calculate. This approach allows us to set up a framework for calculating probabilistic correlations in data without imposing a fixed causal structure (such as a background time). We show how to put quantum theory in this framework (thus providing a new formulation of this theory). We indicate how general relativity might be put into this framework and how the framework might be used to construct a theory of quantum gravity.Comment: 23 pages. For special issue of Journal of Physics A entitled "The quantum universe" in honour of Giancarlo Ghirard
    • …
    corecore