103 research outputs found

    Any Time\u27s Kissing Time

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/3839/thumbnail.jp

    Multiband Superconductivity in KFe2As2: Evidence for one Isotropic and several Liliputian Energy Gaps

    Get PDF
    We report a detailed low-temperature thermodynamic investigation (heat capacity and magnetization) of the superconducting state of KFe2As2 for H || c axis. Our measurements reveal that the properties of KFe2As2 are dominated by a relatively large nodeless energy gap (Delta?0 = 1.9 kBTc) which excludes dx2-y2 symmetry. We prove the existence of several additional extremely small gaps (?Delta0 < 1.0 kBTc) that have a profound impact on the low-temperature and low-field behavior, similar to MgB2, CeCoIn5 and PrOs4Sb12. The zero-field heat capacity is analyzed in a realistic self-consistent 4-band BCS model which qualitatively reproduces the recent laser ARPES results of Okazaki et al. (Science 337 (2012) 1314). Our results show that extremely low-temperature measurements, i.e. T < 0.1 K, will be required in order to resolve the question of the existence of line nodes in this compound.Comment: 7 pages, 6 figure

    Electronic nematicity in URu2Si2 revisited

    Full text link
    The nature of the hidden-order (HO) state in URu2Si2 remains one of the major unsolved issues in heavy-fermion physics. Recently, torque magnetometry, x-ray diffraction and elastoresistivity data have suggested that the HO phase transition at THO = 17.5 K is driven by electronic nematic effects. Here, we search for thermodynamic signatures of this purported structural instability using anisotropic thermal-expansion, Young\'s modulus, elastoresistivity and specific-heat measurements. In contrast to the published results, we find no evidence of a rotational symmetry-breaking in any of our data. Interestingly, our elastoresistivity measurements, which are in full agreement with published results, exhibit a Curie-Weiss divergence, which we however attribute to a volume and not to a symmetry-breaking effect. Finally, clear evidence for thermal fluctuations is observed in our heat-capacity data, from which we estimate the HO correlation length.Comment: 4 Figures, 5 page

    Interplay of stripe and double-Q magnetism with superconductivity in Ba1xKxFe2As2\mathrm{Ba}_{1-x}\mathrm{K}_{x}\mathrm{Fe}_{2}\mathrm{As}_{2} under the influence of magnetic fields

    Full text link
    At x0.25x\approx0.25 Ba1xKxFe2As2\mathrm{Ba}_{1-x}\mathrm{K}_{x}\mathrm{Fe}_{2}\mathrm{As}_{2} undergoes a novel first-order transition from a four-fold symmetric double-Q magnetic phase to a two-fold symmetric single-Q phase, which was argued to occur simultaneously with the onset of superconductivity (B\"ohmer et al., Nat. Comm. 6, 7911 (2015)). Here, by applying magnetic fields up to 10T, we investigate in more detail the interplay of superconductivity with this magneto-structural transition using a combination of high-resolution thermal-expansion and heat-capacity measurements. We find that a magnetic field suppresses the reentrance of the single-Q orthorhombic phase more strongly than the superconducting transition, resulting in a splitting of the zero-field first-order transition. The suppression rate of the orthorhombic reentrance transition is stronger for out-of-plane than for in-plane fields and scales with the anisotropy of the superconducting state. These effects are captured within a phenomenological Ginzburg-Landau model, strongly suggesting that the suppression of the reentrant orthorhombic single-Q phase is primarily linked to the field-induced weakening of the superconducting order. Not captured by this model is however a strong reduction of the orthorhombic distortion for out-of-plane fields, which deserves further theoretical attention

    Outside-in disk evolution in the LMC

    Full text link
    From the analysis of the color-magnitude diagrams and color functions of four wide LMC fields located from ~2 to 6 kpc from the kinematic center of the LMC we present evidence that, while the oldest population is coeval in all fields, the age of the youngest component of the dominant stellar population gradually increases with galactocentric distance, from currently active star formation in a field at 2.3 deg, to 100 Myr, 0.8 Gyr, and 1.5 Gyr in fields at 4.0 deg, 5.5 deg, and 7.1 deg, respectively. This outside-in quenching of the star formation in the LMC disk is correlated with the decreasing HI column density (which is < 2x 10^{20} cm^{-2} in the two outermost fields with little or no current star formation. Other work in the literature hints at similar behavior in the stellar populations of irregular galaxies, and in M33. This is observational evidence against the inside-out disk formation scenario in low-mass spirals and irregular galaxies. Alternatively, it could be that the age distribution with radius results from interplay between the evolution with time of the star-forming area of the LMC and the subsequent outward migration of the stars.Comment: 6 pages, 2 figures, ApJ Letters, in pres

    Colossal c-axis response and lack of rotational symmetry breaking within the kagome plane of the CsV3_3Sb5_5 superconductor

    Full text link
    The kagome materials AV43_3Sb5_5 (A = K, Rb, Cs) host an intriguing interplay between unconventional superconductivity and charge-density-waves. Here, we investigate CsV3_3Sb5_5 by combining high-resolution thermal-expansion, heat-capacity and electrical resistance under strain measurements. We directly unveil that the superconducting and charge-ordered states strongly compete, and that this competition is dramatically influenced by tuning the crystallographic c-axis. In addition, we report the absence of additional bulk phase transitions within the charge-ordered state, notably associated with rotational symmetry-breaking within the kagome planes. This suggests that any breaking of the C6_6 invariance occurs via different stacking of C6_6-symmetric kagome patterns. Finally, we find that the charge-density-wave phase exhibits an enhanced A1g_{1g}-symmetric elastoresistance coefficient, whose large increase at low temperature is driven by electronic degrees of freedom

    Digital tools for brownfield redevelopment: Stakeholder perspectives and opportunities

    Get PDF
    Brownfield redevelopment is a complex process often involving a wide range of stakeholders holding differing priorities and opinions. The use of digital systems and products for decision making, modelling, and supporting discussion has been recognised throughout literature and industry. The inclusion of stakeholder preferences is an important consideration in the design and development of impactful digital tools and decision support systems. In this study, we present findings from stakeholder consultation with professionals from the UK brownfield sector with the aim of informing the design of future digital tools and systems. Our research investigates two broad themes; digitalisation and the use of digital tools across the sector; and perceptions of key brownfield challenge areas where digital tools could help better inform decision-makers. The methodology employed for this study comprises the collection of data and information using a combination of interviews and an online questionnaire. The results from these methods were evaluated both qualitatively and quantitatively. Findings reveal a disparity in levels of digital capability between stakeholder groups including between technical stakeholder types, and that cross-discipline communication of important issues may be aided by the development of carefully designed digital tools. To this end, we present seven core principles to guide the design and implementation of future digital tools for the brownfield sector. These principles are that future digital tools should be: (1) Stakeholder driven, (2) Problem centred, (3) Visual, (4) Intuitive, (5) Interactive, (6) Interoperable, and (7) Geospatial data driven

    A critical review of decision support systems for brownfield redevelopment

    Get PDF
    Over the past two decades, many decision support systems (DSSs) have been developed to support decision makers and facilitate the planning and redevelopment process of brownfields. Existing systems are however often siloed in their approach and do not fully capture the complexity of brownfield sites from a sustainable development point of view. This critical review provides an insight into the development and implementation of DSSs, published and emerging, together with assessment of their strengths, limitations and opportunities for future integration. Brownfields DSS applications include: remediation technology selection; and land use planning; and risk assessment. The results of this review lead the authors to identify four opportunities to improve brownfield DSSs: (i) increased use of qualitative socioeconomic criteria, particularly costs and economic variables, (ii) decision-support during the early stages of brownfield redevelopment, (iii) the integration of predictive modelling methods, and (iv) improvements of user interfaces and modern web-based functionalities
    corecore