127 research outputs found

    A Bright Solitonic Matter-Wave Interferometer

    Full text link
    We present the first realisation of a solitonic atom interferometer. A Bose-Einstein condensate of 1×1041\times10^4 atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the ss-wave scattering length of the 85^{85}Rb atoms is tuned to a small negative value. This attractive atomic interaction then balances the inherent matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder interferometer is constructed by driving Bragg transitions with the use of an optical lattice co-linear with the waveguide. Matter wave propagation and interferometric fringe visibility are compared across a range of ss-wave scattering values including repulsive, attractive and non-interacting values. The solitonic matter wave is found to significantly increase fringe visibility even compared with a non-interacting cloud.Comment: 6 pages, 4 figure

    A quantum sensor: simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate

    Full text link
    A Bose-Einstein condensate is used as an atomic source for a high precision sensor. A 5×1065\times 10^6 atom F=1 spinor condensate of 87^{87}Rb is released into free fall for up to 750750ms and probed with a Mach-Zehnder atom interferometer based on Bragg transitions. The Bragg interferometer simultaneously addresses the three magnetic states, mf=1,0,1\left| m_f=1,0,-1 \right\rangle, facilitating a simultaneous measurement of the acceleration due to gravity with an asymptotic precision of 2.1×1092.1\times 10^{-9}Δ\Deltag/g and the magnetic field gradient to a precision 88pT/m

    Non-destructive shadowgraph imaging of ultracold atoms

    Full text link
    An imaging system is presented that is capable of far-detuned non-destructive imaging of a Bose-Einstein condensate with the signal proportional to the second spatial derivative of the density. Whilst demonstrated with application to 85Rb^{85}\text{Rb}, the technique generalizes to other atomic species and is shown to be capable of a signal to noise of 25{\sim}25 at 11GHz detuning with 100100 in-trap images showing no observable heating or atom loss. The technique is also applied to the observation of individual trajectories of stochastic dynamics inaccessible to single shot imaging. Coupled with a fast optical phase lock loop, the system is capable of dynamically switching to resonant absorption imaging during the experiment.Comment: 4 pages, 5 figure

    How might educational research into children’s ideas about light be of use to teachers?

    Get PDF
    This paper offers a synthesis of research evidence around teaching light to primary and secondary school pupils, as part of the Institute of Physics (IOP) Promoting and Interpreting Physics Education Research (PIPER) project. Conceptual change literature describes many difficulties young people have with understanding the phenomenon of light, and this knowledge can be useful in the classroom. Pupil teacher dialogue is used to illustrate some of the pedagogical challenges teachers face in this topic. This paper highlights a range of influences on pupils from everyday life and from the classroom, with a view to promoting teacher awareness of conceptual change research evidence

    "Don't wait for them to come to you, you go to them". A qualitative study of recruitment approaches in community based walking programmes in the UK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to examine the experiences of walking promotion professionals on the range and effectiveness of recruitment strategies used within community based walking programmes within the United Kingdom.</p> <p>Methods</p> <p>Two researchers recruited and conducted semi-structured interviews with managers and project co-ordinators of community based walking programmes, across the UK, using a purposive sampling frame. Twenty eight interviews were conducted, with community projects targeting participants by age, physical activity status, socio-demographic characteristics (i.e. ethnic group) or by health status. Three case studies were also conducted with programmes aiming to recruit priority groups and also demonstrating innovative recruitment methods. Data analysis adopted an approach using analytic induction.</p> <p>Results</p> <p>Two types of programmes were identified: those with explicit health aims and those without. Programme aims which required targeting of specific groups adopted more specific recruitment methods. The selection of recruitment method was dependent on the respondent’s awareness of ‘what works’ and the resource capacity at their disposal. Word of mouth was perceived to be the most effective means of recruitment but using this approach took time and effort to build relationships with target groups, usually through a third party. Perceived effectiveness of recruitment was assessed by number of participants rather than numbers of the right participants. Some programmes, particularly those targeting younger adult participants, recruited using new social communication media. Where adopted, social marketing recruitment strategies tended to promote the ‘social’ rather than the ‘health’ benefits of walking.</p> <p>Conclusions</p> <p>Effective walking programme recruitment seems to require trained, strategic, labour intensive, word-of-mouth communication, often in partnerships, in order to understand needs and develop trust and motivation within disengaged sedentary communities. Walking promotion professionals require better training and resources to deliver appropriate recruitment strategies to reach priority groups.</p

    Selective targeting of microglia by quantum dots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases.</p> <p>Methods</p> <p>Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies.</p> <p>Results</p> <p>In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity.</p> <p>Conclusions</p> <p>These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.</p
    corecore