258 research outputs found

    Diagnostic accuracy of intraoperative margin assessment techniques in surgery for head and neck squamous cell carcinoma: a meta-analysis

    Get PDF
    BACKGROUND: Positive margins following head and neck squamous cell carcinoma (HNSCC) surgery lead to significant morbidity and mortality. Existing Intraoperative Margin Assessment (IMA) techniques are not widely used due to limitations in sampling technique, time constraints and resource requirements. We performed a meta-analysis of the diagnostic performance of existing IMA techniques in HNSCC, providing a benchmark against which emerging techniques may be judged. METHODS: The study was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines. Studies were included if they reported diagnostic metrics of techniques used during HNSCC surgery, compared with permanent histopathology. Screening, manuscript review and data extraction was performed by multiple independent observers. Pooled sensitivity and specificity were estimated using the bivariate random effects model. RESULTS: From an initial 2344 references, 35 studies were included for meta-analysis. Sensitivity (Sens), specificity (Spec), diagnostic odds ratio (DOR) and area under the receiver operating characteristic curve (AUROC) were calculated for each group (n, Sens, Spec, DOR, AUROC): frozen section = 13, 0.798, 0.991, 309.8, 0.976; tumour-targeted fluorescence (TTF) = 5, 0.957, 0.827, 66.4, 0.944; optical techniques = 10, 0.919, 0.855, 58.9, 0.925; touch imprint cytology = 3, 0.925, 0.988, 51.1, 0.919; topical staining = 4, 0.918, 0.759, 16.4, 0.833. CONCLUSIONS: Frozen section and TTF had the best diagnostic performance. Frozen section is limited by sampling error. TTF shows promise but involves administration of a systemic agent. Neither is currently in widespread clinical use. Emerging techniques must demonstrate competitive diagnostic accuracy whilst allowing rapid, reliable, cost-effective results

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)
    corecore