58 research outputs found

    A Search for Ultra-High Energy Counterparts to Gamma-Ray Bursts

    Get PDF
    A small air shower array operating over many years has been used to search for ultra-high energy (UHE) gamma radiation (≥50\geq 50 TeV) associated with gamma-ray bursts (GRBs) detected by the BATSE instrument on the Compton Gamma-Ray Observatory (CGRO). Upper limits for a one minute interval after each burst are presented for seven GRBs located with zenith angles θ<20∘\theta < 20^{\circ}. A 4.3σ4.3\sigma excess over background was observed between 10 and 20 minutes following the onset of a GRB on 11 May 1991. The confidence level that this is due to a real effect and not a background fluctuation is 99.8\%. If this effect is real then cosmological models are excluded for this burst because of absorption of UHE gamma rays by the intergalactic radiation fields.Comment: 4 pages LaTeX with one postscript figure. This version does not use kluwer.sty and will allow automatic postscript generatio

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Progress towards ignition on the National Ignition Facility

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Capital or income breeding? A theoretical model of female reproductive strategies

    No full text
    Energy storage is an important component of life-history variation. A distinction is recognized between species that provision offspring using energy gained concurrently (income breeders) and those that provision offspring using energy stores accumulated at an earlier time (capital breeders). Although this distinction has been recognized for some time, surprisingly little attention has been paid to the general adaptive value of the 2 strategies. Here, we present a simple, general framework for modeling female reproductive strategies. We show that our framework can be applicable either to annual breeders that aim to maximize the energy delivered to their offspring before independence, or to species with shorter reproductive cycles that aim to maximize reproductive rate, given that their offspring must build up a given level of reserves before independence. For both scenarios, we show that the costs of accumulating capital can lead to pure income breeding, pure capital breeding, or a mixture of the 2 strategies. Our model allows the effects of a variety of parameters to be assessed. Length of gestation, offspring metabolism, efficiency of energy transfer from mother to offspring, and the relative rates of energy gain by females with and without offspring are all important factors. The cost associated with accumulated capital is a particularly critical determinant of the strategy adopted. More detailed approaches to specific systems may provide a greater understanding of the factors promoting different maternal strategies for offspring provisioning

    Capital and income breeding: the role of food supply

    Get PDF
    An aspect of life history that has seen increasing attention in recent years is that of strategies for financing the costs of offspring production. These strategies are often described by a continuum ranging from capital breeding, in which costs are met purely from endogenous reserves, to income breeding, in which costs are met purely from concurrent intake. A variety of factors that might drive strategies toward a given point on the capital–income continuum has been reviewed, and assessed using analytical models. However, aspects of food supply, including seasonality and unpredictability, have often been cited as important drivers of capital and income breeding, but are difficult to assess using analytical models. Consequently, we used dynamic programming to assess the role of the food supply in shaping offspring provisioning strategies. Our model is parameterized for a pinniped (one taxon remarkable for the range of offspring-provisioning strategies that it illustrates). We show that increased food availability, increased seasonality, and, to a lesser extent, increased unpredictability can all favor the emergence of capital breeding. In terms of the conversion of energy into offspring growth, the shorter periods of care associated with capital breeding are considerably more energetically efficient than income breeding, because shorter periods of care are associated with a higher ratio of energy put into offspring growth to energy spent on parent and offspring maintenance metabolism. Moreover, no clear costs are currently associated with capital accumulation in pinnipeds. This contrasts with general assumptions about endotherms, which suggest that income breeding will usually be preferred. Our model emphasizes the role of seasonally high abundances of food in enabling mothers to pursue an energetically efficient capital-breeding strategy. We discuss the importance of offspring development for dictating strategies for financing offspring production

    The scaling of diving time budgets: Insights from an optimality approach.

    No full text
    Simple scaling arguments suggest that, among air-breathing divers, dive duration should scale approximately with mass to the one-third power. Recent phylogenetic analyses appear to confirm this. The same analyses showed that duration of time spent at the surface between dives has scaling very similar to that of dive duration, with the result that the ratio of dive duration to surface pause duration is approximately mass invariant. This finding runs counter to other arguments found in the diving literature that suggest that surface pause duration should scale more positively with mass, leading to a negative scaling of the dive-pause ratio. We use a published model of optimal time allocation in the dive cycle to show that optimal decisions can predict approximate mass invariance in the dive-pause ratio, especially if metabolism scales approximately with mass to the two-thirds power (as indicated by some recent analyses) and oxygen uptake is assumed to have evolved to supply the body tissues at the required rate. However, emergent scaling rules are sensitive to input parameters, especially to the relationship between the scaling of metabolism and oxygen uptake rate at the surface. Our results illustrate the utility of an optimality approach for developing predictions and identifying key areas for empirical research on the allometry of diving behavior

    The Baltic Sea: An ecosystem with multiple stressors

    Full text link
    This introductory chapter to our Environment International VSI does not need an abstract and therefore we just include our recommendations below in order to proceed with the resubmission. Future work should examine waterbirds as food web sentinels of multiple stressors as well as Baltic Sea food web dynamics of hazardous substances and how climate change may modify it. Also, future work should aim at further extending the new frameworks developed within BALTHEALTH for energy and contaminant transfer at the population level (Desforges et al., 2018, Cervin et al., 2020/this issue Silva et al., 2020/this issue) and their long term effects on Baltic Sea top predators, such as harbour porpoises, grey seals ringed seals, and white-tailed eagles. Likewise, the risk evaluation conducted for PCB in connection with mercury on Arctic wildlife (Dietz et al., 2019, not a BONUS BALTHEALTH product) could be planned for Baltic Sea molluscs, fish, bird and marine mammals in the future. Finally, future efforts could include stressors not covered by the BONUS BALTHEALTH project, such as food web fluxes, overexploitation, bycatches, eutrophication and underwater noise
    • …
    corecore