10,493 research outputs found

    First principles study of intrinsic point defects in hexagonal barium titanate

    Get PDF
    Density functional theory (DFT) calculations have been used to study the nature of intrinsic defects in the hexagonal polymorph of barium titanate. Defect formation energies are derived for multiple charge states and due consideration is given to finite-size effects (elastic and electrostatic) and the band gap error in defective cells. Correct treatment of the chemical potential of atomic oxygen means that it is possible to circumvent the usual errors associated with the inaccuracy of DFT calculations on the oxygen dimer. Results confirm that both mono- and di-vacancies exist in their nominal charge states over the majority of the band gap. Oxygen vacancies are found to dominate the system in metal-rich conditions with face sharing oxygen vacancies being preferred over corner sharing oxygen vacancies. In oxygen-rich conditions, the dominant vacancy found depends on the Fermi level. Binding energies also show the preference for metal-oxygen di-vacancy formation. Calculated equilibrium concentrations of vacancies in the system are presented for numerous temperatures. Comparisons are drawn with the cubic polymorph as well as with previous potential-based simulations and experimental results

    Resistance of superconducting nanowires connected to normal metal leads

    Full text link
    We study experimentally the low temperature resistance of superconducting nanowires connected to normal metal reservoirs. We find that a substantial fraction of the nanowires is resistive, down to the lowest temperature measured, indicative of an intrinsic boundary resistance due to the Andreev-conversion of normal current to supercurrent. The results are successfully analyzed in terms of the kinetic equations for diffusive superconductors

    Modeling the non-recycled Fermi gamma-ray pulsar population

    Get PDF
    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L depends on the period P and the period derivative \dot{P}. We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L on P and \dot{P}, including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L \propto P^{-a} \dot{P}^{b} where a=1.36\pm0.03 and b=0.44\pm0.02, similar to but not identical to the commonly assumed L \propto \sqrt{\dot{E}} \propto P^{-1.5} \dot{P}^{0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7{\pi} for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2{\sigma} upper limit on the average braking index and a 2{\sigma} lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 X 10^{10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the two-year sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected five-year sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.Comment: 26 pages, 10 figures, Accepted by ApJ on 8 September 201

    Colloidal brazil nut effect in sediments of binary charged suspensions

    Full text link
    Equilibrium sedimentation density profiles of charged binary colloidal suspensions are calculated by computer simulations and density functional theory. For deionized samples, we predict a colloidal ``brazil nut'' effect: heavy colloidal particles sediment on top of the lighter ones provided that their mass per charge is smaller than that of the lighter ones. This effect is verifiable in settling experiments.Comment: 4 pages, 4 figure

    Altitude Limits for Rotating Vector Model Fitting of Pulsar Polarization

    Full text link
    Traditional pulsar polarization sweep analysis starts from the point dipole rotating vector model (RVM) approximation. If augmented by a measurement of the sweep phase shift, one obtains an estimate of the emission altitude (Blaskiewicz, Cordes, & Wasserman). However, a more realistic treatment of field line sweepback and finite altitude effects shows that this estimate breaks down at modest altitude ~ 0.1R_{LC}. Such radio emission altitudes turn out to be relevant to the young energetic and millisecond pulsars that dominate the \gamma-ray population. We quantify the breakdown height as a function of viewing geometry and provide simple fitting formulae that allow observers to correct RVM-based height estimates, preserving reasonable accuracy to R ~ 0.3R_{LC}. We discuss briefly other observables that can check and improve height estimates

    Exposure of undergraduates to authentic GP teaching and subsequent entry to GP training: a quantitative study of UK medical schools.

    Get PDF
    BACKGROUND: It has been suggested that the quantity of exposure to general practice teaching at medical school is associated with future choice of a career as a GP. AIM: To examine the relationship between general practice exposure at medical school and the percentage of each school's graduates appointed to a general practice training programme after foundation training (postgraduate years 1 and 2). DESIGN AND SETTING: A quantitative study of 29 UK medical schools. METHOD: The UK Foundation Programme Office (UKFPO) destination surveys of 2014 and 2015 were used to determine the percentage of graduates of each UK medical school who were appointed to a GP training programme after foundation year 2. The Spearman rank correlation was used to examine the correlation between these data and the number of sessions spent in placements in general practice at each medical school. RESULTS: A statistically significant association was demonstrated between the quantity of authentic general practice teaching at each medical school and the percentage of its graduates who entered GP training after foundation programme year 2 in both 2014 (correlation coefficient [r] 0.41,P= 0.027) and 2015 (r 0.3,P= 0.044). Authentic general practice teaching here is described as teaching in a practice with patient contact, in contrast to non-clinical sessions such as group tutorials in the medical school. DISCUSSION: The authors have demonstrated, for the first time in the UK, an association between the quantity of clinical GP teaching at medical school and entry to general practice training. This study suggests that an increased use of, and investment in, undergraduate general practice placements would help to ensure that the UK meets its target of 50% of medical graduates entering general practice

    Magnetic Photon Splitting: Computations of Proper-time Rates and Spectra

    Get PDF
    The splitting of photons in the presence of an intense magnetic field has recently found astrophysical applications in polar cap models of gamma-ray pulsars and in magnetar scenarios for soft gamma repeaters. Numerical computation of the polarization-dependent rates of this third order QED process for arbitrary field strengths and energies below pair creation threshold is difficult: thus early analyses focused on analytic developments and simpler asymptotic forms. The recent astrophysical interest spurred the use of the S-matrix approach by Mentzel, Berg and Wunner to determine splitting rates. In this paper, we present numerical computations of a full proper-time expression for the rate of splitting that was obtained by Stoneham, and is exact up to the pair creation threshold. While the numerical results derived here are in accord with the earlier asymptotic forms due to Adler, our computed rates still differ by as much as factors of 3 from the S-matrix re-evaluation of Wilke and Wunner, reflecting the extreme difficulty of generating accurate S-matrix numerics for fields below about \teq{4.4\times 10^{13}}Gauss. We find that our proper-time rates appear very accurate, and exceed Adler's asymptotic specializations significantly only for photon energies just below pair threshold and for supercritical fields, but always by less than a factor of around 2.6. We also provide a useful analytic series expansion for the scattering amplitude valid at low energies.Comment: 13 pages, AASTeX format, including 3 eps figures, ApJ in pres

    Full polar cap cascade scenario: γ\gamma-ray and X-ray luminosities from spin-powered pulsars

    Full text link
    We modify polar cap cascade picture to include the ICS of the higher generation pairs. In such a ``full-cascade'' scenario, not only the perpendicular portion of the energy of the pairs goes to high energy radiation via SR, but the parallel portion of the energy of the pairs can also contribute to high energy emission via ICS with the soft thermal photons from either the full neutron star surface or the hot polar cap. An important output of such a scenario is that the soft tail of the ICS spectrum can naturally result in a non-thermal X-ray component which can contribute to the luminosities observed by ROSAT and ASCA. Here we present an analytic description of such a full polar cap cascade scenario within the framework of Harding & Muslimov acceleration model. We present the theoretical predictions of the γ\gamma-ray luminosities, the thermal and non-thermal X-ray luminosities for the known spin-powered X-ray pulsars. Our results show that the observed different dependences of the high energy luminosities on the pulsar spin-down luminosities, i.e., Lγ(Lsd)1/2L_\gamma \propto (L_{\rm sd})^{1/2} and Lx103LsdL_x \sim 10^{-3} L_{\rm sd}, are well reproduced. Our model predicts that the {\em pulsed} soft X-rays in the ROSAT band from most of the millisecond pulsars might be of thermal origin if there is no strong multipole field components near the surfaces of these pulsars.Comment: 23 pages, emulateapj style, final version to appear in the Astrophysical Journa

    Comment on ``Cosmological Gamma Ray Bursts and the Highest Energy Cosmic Rays''

    Get PDF
    In a letter with the above title, published some time ago in PRL, Waxman made the interesting suggestion that cosmological gamma ray bursts (GRBs) are the source of the ultra high energy cosmic rays (UHECR). This has also been proposed independently by Milgrom and Usov and by Vietri. However, recent observations of GRBs and their afterglows and in particular recent data from the Akeno Great Air Shwoer Array (AGASA) on UHECR rule out extragalactic GRBs as the source of UHECR.Comment: Comment on a letter with the above title published by E. Waxman in PRL 75, 386 (1995). Submitted for publication in PRL/Comment

    Superfluid Friction and Late-time Thermal Evolution of Neutron Stars

    Get PDF
    The recent temperature measurements of the two older isolated neutron stars PSR 1929+10 and PSR 0950+08 (ages of 3×1063\times 10^6 and 2×1072\times 10^7 yr, respectively) indicate that these objects are heated. A promising candidate heat source is friction between the neutron star crust and the superfluid it is thought to contain. We study the effects of superfluid friction on the long-term thermal and rotational evolution of a neutron star. Differential rotation velocities between the superfluid and the crust (averaged over the inner crust moment of inertia) of ωˉ0.6\bar\omega\sim 0.6 rad s1^{-1} for PSR 1929+10 and 0.02\sim 0.02 rad s1^{-1} for PSR 0950+08 would account for their observed temperatures. These differential velocities could be sustained by pinning of superfluid vortices to the inner crust lattice with strengths of \sim 1 MeV per nucleus. Pinned vortices can creep outward through thermal fluctuations or quantum tunneling. For thermally-activated creep, the coupling between the superfluid and crust is highly sensitive to temperature. If pinning maintains large differential rotation (10\sim 10 rad s1^{-1}), a feedback instability could occur in stars younger than 105\sim 10^5 yr causing oscillations of the temperature and spin-down rate over a period of 0.3tage\sim 0.3 t_{\rm age}. For stars older than 106\sim 10^6 yr, however, vortex creep occurs through quantum tunneling, and the creep velocity is too insensitive to temperature for a thermal-rotational instability to occur. These older stars could be heated through a steady process of superfluid friction.Comment: 26 pages, 1 figure, submitted to Ap
    corecore