18 research outputs found

    The fight against fruit flies in Western Australia

    Get PDF
    Western Australia’s horticulture industry is one of the State’s growing success stories, from mangoes at Kununurra to cherries at Mt Barker. The prospects are bright, especially in export markets where ‘clean and green’ produce from Western Australia is truly valued. One blight on this ‘clean and green’ image has been Mediterranean fruit fly or Medfly, the ‘world’s worst fruit pest’. First introduced over 100 years ago, the battle against this devastating pest has involved Government, growers and the general public. This book is designed to provide an accurate but readable account of the fight against fruit fly, incorporating all the weapons used in this battle from early chemical and biological control to the futuristic sterile insect technique.https://researchlibrary.agric.wa.gov.au/bulletins/1110/thumbnail.jp

    Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production

    Get PDF
    Š The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus. The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen-ovule recognition

    Crop Updates 2001 - Oilseeds

    Get PDF
    ABSTRACT This session covers twenty five papers from different authors: FORWARD, Mervyn McDougall, CHAIRMAN, PULSES AND OILSEEDS PARTNERSHIP GROUP PLENARY 1. Implications of the ‘green-bridge’ for viral and fungal disease carry-over between seasons, Debbie Thackray, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 2. Insect pest development in WA via the ‘green-bridge’, Kevin Walden, Agriculture Western Australia VARIETIES 3. Performance of new canola varieties in AGWEST variety trials, G. Walton, Crop Improvement Institute, Agriculture Western Australia 4. New herbicide tolerant varieties in WA, Kevin Morthorpe, Stephen Addenbrooke, Pioneer Hi-Bred Australia P/L 5. IT v’s TT – Head to head, Paul Carmody, Centre for Cropping Systems, Agriculture Western Australia ESTABLISHMENT 6. Effect of stubble, seeding technique and seed size on crop establishment and yield of canola, Rafiul Alam, Glen Riethmuller and Greg Hamilton, Agriculture Western Australia 7. Canola establishment survey 2000, Rafiul Alam, Paul Carmody, Greg Hamilton and Adrian Cox, Agriculture Western Australia 8. Tramline farming for more canola, Paul Blackwell, Agriculture Western Australia NUTRITION 9. Comparing the phosphorus requirement of canola and wheat in WA, M.D.A. Bolland and M.J. Baker, Agriculture Western Australia 10. Will a rainy summer affect nitrogen requirement: Tailoring your fertiliser decisions using the new nitrogen calculator, A.J. Diggle, Agriculture Western Australia 11. Canola – More response to lime, Chris Gazeyand Paul Carmody, Centre for Cropping Systems, Agriculture Western Australia AGRONOMY 12. Hormone manipulation of canola development, Paul Carmody and Graham Walton, Agriculture Western Australia 13. Yield penalties with delayed sewing of canola, Imma Farre, CSIRO Plant Industry, Michael J. Robertson, CSIRO Sustainable Ecosystems, Graham H. Walton, Agriculture Western Australia, Senthold Asseng, CSIRO Plant Industry 14. Dry matter and oil accumulation in developing seeds of canola varieties at different sowing dates, Ping Si1, David Turner1 and David Harris2 , 1Plant Sciences, Faculty of Agriculture, The University of Western Australia, 2Chemistry Centre of Western Australia 13. Simulating oil concentrations in canola – virtually just the beginning, David Turner1 and Imma Farré2, 1Plant Sciences, Faculty of Agriculture, The University of Western Australia, 2CSIRO Plant Industry, Centre for Mediterranean Agricultural Research PESTS AND DISEASES 14. Further evidence that canola crops are resilient to damage by aphids, Françoise Berlandier and Christiaan Valentine, Entomology, Agriculture Western Australia 15. Management of Diamondback moth (DBM) in canola, David Cook, Peter Mangano, David Cousins, Françoise Berlandier, and Darryl Hardie, Crop Improvement Institute,Agriculture Western Australia 16. Effect of time of sowing in conjunction with fungicides on blackleg and yield of canola, Ravjit Khangura and Martin Barbetti, Agriculture Western Australia 17. Further developments in forecasting aphid and virus risk in canola, Debbie Thackray, Jenny Hawkes and Roger Jones, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 18. Efficiency of selected insecticides for the use on Diamondback Moth in canola, Kevin Walden, Agriculture Western Australia 19. Impact® applied ‘in furrow’ controls blackleg in canola, Cameron Weeks and Erin Hasson, Mingenew-Irwin Group Inc. 20. Effect of time of sowing and Impact® on canola yield, Esperance, Dave Eksteen, Agriculture Western Australia 21. Australian Plague Locust Campaign 2000, Kevin Walden, Agriculture Western Australia WEED CONTROL 22. New herbicide options for canola, John Moore and Paul Matson, Agriculture Western Australia HARVESTING 23. Effects of time of swathing and desiccant application on the seed yield and oil content of canola, Carla Thomas and Lionel Martin, Muresk Institute of Agriculture, Curtin University of Technology DECISION SUPPORT AND ADOPTION 24. Using canola monitoring groups to understand factors affecting canola production in Esperance, Dave Eksteen, Agriculture Western Australia 25. Nitrogen and canola, Dave Eksteen, Agriculture Western Australi

    Chapter 11 The Role of Surveillance Methods and Technologies in Plant Biosecurity

    Get PDF
    Countries design biosecurity systems to protect their animal, plant, and environmental resources from invasive alien species. Countries maintain biosecurity systems to safely manage trade and prevent the introduction of invasive pests (insects, diseases and weeds) through numerous pathways of entry. Plant biosecurity programmes seek to exclude exotic organisms from becoming established on agricultural crops, ornamental plants and “natural” areas. Without barriers for entry, invasive organisms can expand their range, colonize new territory and cause considerable economic and environmental damage (Magarey et al. 2009). Spatially, one country’s biosecurity efforts may be categorised as “pre-border”, “border” and “post-border” when describing that country’s attempts at minimising the movement of unwanted organisms. Countries collaborate internationally on a range of interrelated biosecurity activities to confront these exotic invasive species. Surveillance is a key component of that continuum. The International Plant Protection Convention (IPPC) defines surveillance as an official process which collects and records data on pest occurrence or absence by survey, monitoring or other procedures. The diverse purposes of surveillance include: • Promote early detection of pests to facilitate eradication or management; • Support trade by demonstrating areas of pest freedom or low pest prevalence; • Describe the distribution and prevalence of risk organisms already present; • Delimit the full extent of pest population following a detected incursion; • Measure the success of biosecurity systems; • Enable management and cost benefit decisions; • Develop a list of pests or hosts present in an area; • Monitor progress in a pest eradication campaign; • Enable reporting to other organisations. National Plant Protection Organisations (NPPO) and other regulatory agencies conduct different types of survey programmes to fulfil these needs. In addition, these Plant Protection agencies often rely on outreach to passively surveil partners who report pest detections. For example, in New Zealand most new pest detections are reported by industry, researchers, and the public via a toll-free telephone number (Froud et al. 2008). The success of plant protection programmes depends on the ability to detect pests. To conduct a survey, a large number of associated tools and technologies are required (Fig. 11.1). Some of the tools/technology involve statistics, GIS, data management and risk mapping, and will be discussed in this chapter. However, effective surveillance tools and technology are often lacking. When no effective insect trap or lure exists, officials must rely on visual surveys. Detecting plant diseases often presents an even greater challenge. The combination of high costs and inadequate technology leads to survey programmes that are less than optimal. As a result, pests frequently are introduced and become established before timely detection. With delay in discovery of invasive pests, the likelihood of eradication decreases while the cost of control/management/eradication increases dramatically. Figure 11.2 shows the hierarchy of surveillance activities and the flow of information. The flow of information starts at the point of collection in the field. From that point, the information is integrated and tailored to meet the needs of various end-users. For a fruit fly trapping example, regulatory officials collect, clean and compile survey data for managers to use to control fruit fly outbreaks (Chap. 15). For another application, industry collects survey data as part of the day-to-day commercial operations. This data is then used as a basis to run predictive models that can help industry understand the movement of emerging pests or pests of phytosanitary concern (Chap. 9). The same data might also be used by growers or regulatory officials to take action in support of surveillance or eradication. This chapter outlines types of survey operations and provides a review of survey design, information management, data integration, modelling, and GIS. Surveys may be structured around high-consequence target pests. Other surveys may focus on commodities and the survey of exotic pests that may be found associated with that commodity. Still other surveys may target high-risk areas. The USDA, APHIS PPQ Cooperative Agricultural Pest Survey (CAPS) serves as an example of a large surveillance programme that demonstrates various surveillance concepts in practise

    Proteomic Profiling of <i>Leishmania donovani</i> Promastigote Subcellular Organelles

    No full text
    To facilitate a greater understanding of the biological processes in the medically important <i>Leishmania donovani</i> parasite, a combination of differential and density-gradient ultracentrifugation techniques were used to achieve a comprehensive subcellular fractionation of the promastigote stage. An in-depth label-free proteomic LC–MS/MS analysis of the density gradients resulted in the identification of ∼50% of the <i>Leishmania</i> proteome (3883 proteins detected), which included ∼645 integral membrane proteins and 1737 uncharacterized proteins. Clustering and subcellular localization of proteins was based on a subset of training <i>Leishmania</i> proteins with known subcellular localizations that had been determined using biochemical, confocal microscopy, or immunoelectron microscopy approaches. This subcellular map will be a valuable resource that will help dissect the cell biology and metabolic processes associated with specific organelles of <i>Leishmania</i> and related kinetoplastids

    Multiplexed MRM with Internal Standards for Cerebrospinal Fluid Candidate Protein Biomarker Quantitation

    No full text
    Multiplexed quantitation is essential for discovering, verifying, and validating biomarkers for risk stratification, disease prognostication, and therapeutic monitoring. The most promising strategy for quantifying unverified protein biomarkers in biofluids relies on selected/multiple reaction monitoring (SRM or MRM) technology with isotopically labeled standards employed within a bottom-up proteomic workflow. Since cerebrospinal fluid (CSF) is an important fluid for studying central nervous system (CNS) related diseases, we sought to develop a rapid, antibody- and fractionation-free MRM-based approach with a complex mixture of peptide standards to quantify a highly multiplexed panel of candidate protein biomarkers in human CSF. Development involved peptide transition optimization, denaturation/digestion protocol evaluation, transition interference screening, and protein quantitation via peptide standard curves. The final method exhibited excellent reproducibility (average coefficient of variation of <1% for retention time and <6% for signal) and breadth of quantitation (130 proteins from 311 interference-free peptides) in a single 43-min run. These proteins are of high-to-low abundance with determined concentrations from 118 Îźg/mL (serum albumin) to 550 pg/mL (apolipoprotein C-I). Overall, the method consists of the most highly multiplexed and broadest panel of candidate protein biomarkers in human CSF reported thus far and is well suited for subsequent verification studies on patient samples

    SISCAPA Peptide Enrichment on Magnetic Beads Using an In-line Bead Trap Device*S⃞

    No full text
    A SISCAPA (stable isotope standards and capture by anti-peptide antibodies) method for specific antibody-based capture of individual tryptic peptides from a digest of whole human plasma was developed using a simplified magnetic bead protocol and a novel rotary magnetic bead trap device. Following off-line equilibrium binding of peptides by antibodies and subsequent capture of the antibodies on magnetic beads, the bead trap permitted washing of the beads and elution of bound peptides inside a 150-Îźm-inner diameter capillary that forms part of a nanoflow LC-MS/MS system. The bead trap sweeps beads against the direction of liquid flow using a continuous succession of moving high magnetic field-gradient trap regions while mixing the beads with the flowing liquid. This approach prevents loss of low abundance captured peptides and allows automated processing of a series of SISCAPA reactions. Selected tryptic peptides of Îą1-antichymotrypsin and lipopolysaccharide-binding protein were enriched relative to a high abundance serum albumin peptide by 1,800 and 18,000-fold, respectively, as measured by multiple reaction monitoring. A large majority of the peptides that are bound nonspecifically in SISCAPA reactions were shown to bind to components other than the antibody (e.g. the magnetic beads), suggesting that substantial improvement in enrichment could be achieved by development of improved inert bead surfaces

    Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus

    No full text
    Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen–ovule interactions. Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus. The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen–ovule recognition

    Summary of insecticide inputs applied to each trial site across Australia.

    No full text
    <p>Growing season rainfall is shown in brackets. In 2010 the crop was canola and in the same location, wheat in 2011.</p>$<p>PS = pre-sow; PSPE = post-sowing, pre-emergence; PE = post-emergence; LS = late season foliar treatments.</p>#<p>An aerial application of metaldehyde was used across all plots to control snails late season.</p
    corecore