217 research outputs found

    PBX3 in cancer

    Get PDF
    PBX3 is a homeodomain-containing transcription factor of the pre-B cell leukemia (PBX) family, members of which have extensive roles in early development and some adult processes. A number of features distinguish PBX3 from other PBX proteins, including the ability to form specific and stable interactions with DNA in the absence of cofactors. PBX3 has frequently been reported as having a role in the development and maintenance of a malignant phenotype, and high levels of PBX3 tumor expression have been linked to shorter overall survival in cancer. In this review we consider the similarities and differences in the function of PBX3 in different cancer types and draw together the core signaling pathways involved to help provide a better insight into its potential as a therapeutic target

    Calcium insensitivity of FA-6, a cell line derived from a pancreatic cancer associated with humoral hypercalcemia, is mediated by the significantly reduced expression of the Calcium Sensitive Receptor transduction component p38 MAPK

    Get PDF
    The Calcium-Sensing Receptor is a key component of Calcium/Parathyroid hormone homeostatic system that helps maintain appropriate plasma Ca(2+ )concentrations. It also has a number of non-homeostatic functions, including cell cycle regulation through the p38 MAPK pathway, and recent studies have indicated that it is required for Ca(2+ )mediated growth arrest in pancreatic carcinoma cells. Some pancreatic cancers produce pathogenic amounts of parathyroid like hormones, however, which significantly increase Ca(2+ )plasma concentrations and might be expected to block further cell growth. In this study we have investigated the expression and function of the p38 MAPK signaling pathway in Ca(2+ )sensitive (T3M-4) and insensitive (FA6) pancreatic cancer cell lines. FA-6 cells, which are derived from a pancreatic adenocarcinoma that secretes a parathyroid hormone related peptide, exhibit only very low levels of p38 MAPK expression, relative to T3M-4 cells. Transfecting FA-6 cells with a p38 MAPK expression construct greatly increases their sensitivity to Ca(2+). Furthermore, the reduction of p38 MAPK in T3M-4 cells significantly reduces the extent to which high levels of Ca(2+ )inhibit proliferation. These results suggest that the low levels of p38 MAPK expression in FA-6 cells may serve to reduce their sensitivity to high concentrations of external Ca(2+ )that would otherwise block proliferation

    Activation and Genetic Modification of Human Monocyte-Derived Dendritic Cells using Attenuated Salmonella typhimurium

    Get PDF
    Live attenuated bacterial vectors, such as Salmonella typhimurium, have shown promise as delivery vehicles for DNA. We have examined two new strains of S. typhimurium and their impact on dendritic cell maturation (CD12-sifA/aroC mutant and WT05-ssaV/aroC, both in TML background). Strain WT05 matured dendritic cells in a more efficient way; caused higher release of cytokines TNF-α, IL-12, IL-1β; and was efficient for gene transfer. These findings suggest that the genetic background of the attenuation can influence the pattern of inflammatory immune response to Salmonella infection

    Treatment-emergent neuroendocrine prostate cancer: molecularly driven clinical guidelines

    Get PDF
    An increasingly recognized mechanism of prostate cancer resistance is the transdifferentiation from adenocarcinoma to treatment-emergent neuroendocrine prostate cancer (t-NEPC), an extremely aggressive malignancy. The incidence of t-NEPC has been increasing in recent years, in part due to novel treatments that target the androgen receptor pathway. While clinicians historically had very few options for t-NEPC detection and treatment, recent research has uncovered key diagnostic tools and therapeutic targets that can be translated into improved patient care. In this article, we will outline the clinical features of t-NEPC and its molecular pathogenesis. Importantly, we will also discuss recently uncovered molecularly based strategies aimed at improving the diagnosis and treatment of t-NEPC. Finally, we will propose a unified algorithm that integrates clinical and molecular information for the clinical management of t-NEPC

    HOX genes in ovarian cancer

    Get PDF
    The HOX genes are a family of homeodomain-containing transcription factors that determine cellular identity during development. Here we review a number of recent studies showing that HOX genes are strongly expressed in ovarian cancer, and that in some cases the expression of specific HOX genes is sufficient to confer a particular identity and phenotype upon cancer cells. We also review the recent advances in elucidating the different functions of HOX genes in ovarian cancer. A literature search was performed using the search terms HOX genes (including specific HOX genes), ovarian cancer and oncogenesis. Articles were accessed through searches performed in ISI Web of Knowledge, PubMed and ScienceDirect. Taken together, these studies have shown that HOX genes play a role in the oncogenesis of ovarian cancer and function in the inhibition of apoptosis, DNA repair and enhanced cell motility. The function of HOX genes in ovarian cancer oncogenesis supports their potential role as prognostic and diagnostic markers, and as therapeutic targets in this disease

    Kinase regulation of HOX transcription factors

    Get PDF
    The HOX genes are a group of homeodomain-containing transcription factors that play important regulatory roles in early development, including the establishment of cell and tissue identity. HOX expression is generally reduced in adult cells but is frequently re-established as an early event in tumour formation and supports an oncogenic phenotype. HOX transcription factors are also involved in cell cycle regulation and DNA repair, along with normal adult physiological process including stem cell renewal. There have been extensive studies on the mechanism by which HOX proteins regulate transcription, with particular emphasis on their interaction with cofactors such as Pre-B-cell Leukaemia Homeobox (PBX) and Myeloid Ecotropic Viral Integration Site 1 (MEIS). However, significantly less is known of how the activity of HOX proteins is regulated. There is growing evidence that phosphorylation may play an important role in this context, and in this review, we draw together a number of important studies published over the last 20 years, and discuss the relevance of phosphorylation in the regulation and function of HOX proteins in development, evolution, cell cycle regulation, and cancer

    A specific blood signature reveals higher levels of S100A12: a potential bladder cancer diagnostic biomarker along with urinary Engrailed-2 protein detection

    Get PDF
    Urothelial carcinoma of the urinary bladder (UCB) or Bladder cancer remains a major health problem with high morbidity and mortality rates, especially in the western world. UCB is also associated with the highest cost per patient. In recent years numerous markers have been evaluated for suitability in UCB detection and surveillance. However, to date none of these markers can replace or even reduce the use of routine tools (cytology and cystoscopy). Our current study described the UCB's extensive expression profile and highlighted the variations with normal bladder tissue. Our data revealed that JUP, PTGDR, KLRF1, MT-TC and RNU6-135P are associated with prognosis in patients with UCB. The microarray expression data identified also S100A12, S100A8 and NAMPT as potential UCB biomarkers. Pathway analysis revealed that natural killer cell mediated cytotoxicity is the most involved pathway. Our analysis showed that S100A12 protein may be useful as a biomarker for early UCB detection. Plasma S100A12 has been observed in patients with UCB with an overall sensitivity of 90.5% and a specificity of 75%. S100A12 is highly expressed preferably in high-grade and high-stage UCB. Furthermore, using a panel of more than hundred urine samples, a prototype lateral flow test for the transcription factor Engrailed-2 (EN2) also showed reasonable sensitivity (85%) and specificity (71%). Such findings provide confidence to further improve and refine the EN2 rapid test for use in clinical practice. In conclusion, S100A12 and EN2 have shown potential value as biomarker candidates for UCB patients. These results can speed up the discovery of biomarkers, improving diagnostic accuracy and may help the management of UCB
    corecore