35 research outputs found

    The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses.

    Get PDF
    PURPOSE: Investigate the acute and short-term (i.e., 24 h) effects of traditional (TRAD), superset (SS), and tri-set (TRI) resistance training protocols on perceptions of intensity and physiological responses. METHODS: Fourteen male participants completed a familiarisation session and three resistance training protocols (i.e., TRAD, SS, and TRI) in a randomised-crossover design. Rating of perceived exertion, lactate concentration ([Lac]), creatine kinase concentration ([CK]), countermovement jump (CMJ), testosterone, and cortisol concentrations was measured pre, immediately, and 24-h post the resistance training sessions with magnitude-based inferences assessing changes/differences within/between protocols. RESULTS: TRI reported possible to almost certainly greater efficiency and rate of perceived exertion, although session perceived load was very likely lower. SS and TRI had very likely to almost certainly greater lactate responses during the protocols, with changes in [CK] being very likely and likely increased at 24 h, respectively. At 24-h post-training, CMJ variables in the TRAD protocol had returned to baseline; however, SS and TRI were still possibly to likely reduced. Possible increases in testosterone immediately post SS and TRI protocols were reported, with SS showing possible increases at 24-h post-training. TRAD and SS showed almost certain and likely decreases in cortisol immediately post, respectively, with TRAD reporting likely decreases at 24-h post-training. CONCLUSIONS: SS and TRI can enhance training efficiency and reduce training time. However, acute and short-term physiological responses differ between protocols. Athletes can utilise SS and TRI resistance training, but may require additional recovery post-training to minimise effects of fatigue

    Long-term effects of tongue piercing — a case control study

    Get PDF
    The aim of this study was to evaluate tooth and periodontal damage in subjects wearing a tongue piercing (TP) in comparison to matched control subjects without tongue piercing. Members of the German Federal Armed Forces who had TP (group TP) and a matched control group (group C) volunteered to take part in the study. The time in situ, localization and material of TP were documented. Dental examinations included DMF-T, oral hygiene, enamel fissures (EF), enamel cracks (EC) and recessions. Statistical analysis was determined by χ2 test and the t test. Both groups had 46 male subjects (mean age 22.1 years). The piercings had been in situ for 3.8 ± 3.1 years. Subjects in the TP group had a total of 1,260 teeth. Twenty-nine subjects had 115 teeth (9.1%) with EF (67% lingual). In group C (1,243 teeth), 30 subjects had 60 teeth with EF (4.8%, 78% vestibular) (p < 0.01). Thirty-eight subjects belonging to group TP had EC in 186 teeth (15%). In group C, 26 subjects with 56 teeth (4.5%) were affected by EC (p < 0.001). Twenty-seven subjects in group TP had 97 teeth (7.7%) with recessions. Lingual surfaces of anterior teeth in the lower jaw were affected most frequently (74%). In group C, 8 subjects had 19 teeth (1.5%) with recessions (65% vestibular). Differences between the two groups were statistically significant (p < 0.001). Tongue piercing is correlated with an increased occurrence of enamel fissures, enamel cracks and lingual recessions. Patients need better information on the potential complications associated with tongue piercing

    Purine metabolism regulates DNA repair and therapy resistance in glioblastoma

    Get PDF
    Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming therapy resistance. Treatments that are effective independent of genotype are urgently needed. By correlating intracellular metabolite levels with radiation resistance across dozens of genomically-distinct models of GBM, we find that purine metabolites, especially guanylates, strongly correlate with radiation resistance. Inhibiting GTP synthesis radiosensitizes GBM cells and patient-derived neurospheres by impairing DNA repair. Likewise, administration of exogenous purine nucleosides protects sensitive GBM models from radiation by promoting DNA repair. Neither modulating pyrimidine metabolism nor purine salvage has similar effects. An FDA-approved inhibitor of GTP synthesis potentiates the effects of radiation in flank and orthotopic patient-derived xenograft models of GBM. High expression of the rate-limiting enzyme of de novo GTP synthesis is associated with shorter survival in GBM patients. These findings indicate that inhibiting purine synthesis may be a promising strategy to overcome therapy resistance in this genomically heterogeneous disease

    Agroecological management of cucurbit-infesting fruit fly: a review

    Full text link

    Her2/neu signaling blockade improves tumor oxygenation in a multifactorial fashion in Her2/neu+ tumors

    No full text
    PURPOSE: Tumor hypoxia reduces the efficacy of radiation and chemotherapy as well as altering gene expression that promotes cell survival and metastasis. The growth factor receptor, Her2/neu, is overexpressed in 25–30% of breast tumors. Tumors that are Her2(+) may have an altered state of oxygenation, relative to Her2(−)tumors, due to differences in tumor growth rate and angiogenesis. METHODS: Her2 blockade was accomplished using an antibody to the receptor (trastuzumab; Herceptin). This study examined the effects of Her2 blockade on tumor angiogenesis, vascular architecture, and hypoxia in Her2(+) and Her2(−) MCF7 xenograft tumors. RESULTS: Treatment with trastuzumab in Her2(+) tumors significantly improved tumor oxygenation, increased microvessel density, and improved vascular architecture compared with the control-treated Her2(+) tumors. The Her2(+) xenografts treated with trastuzumab also demonstrated decreased proliferation indices when compared with control-treated xenografts. These results indicate that Her2 blockade can improve tumor oxygenation by decreasing oxygen consumption (reducing tumor cell proliferation and inducing necrosis) and increasing oxygen delivery (vascular density and architecture). CONCLUSIONS: These results support the use of trastuzumab as an adjunct in the treatment of breast tumors with chemotherapy or radiotherapy, as improvements in tumor oxygenation should translate into improved treatment response
    corecore