28 research outputs found

    Langmuir Turbulence under Hurricane Gustav (2008)

    Get PDF
    Extreme winds and complex wave fields drive upper-ocean turbulence in tropical cyclone conditions. Motivated by Lagrangian float observations of bulk vertical velocity variance (VVV) under Hurricane Gustav (2008), upper-ocean turbulence is investigated based on large-eddy simulation (LES) of the wave-averaged Navier–Stokes equations. To realistically capture wind- and wave-driven Langmuir turbulence (LT), the LES model imposes the Stokes drift vector from spectral wave simulations; both the LES and wave model are forced by the NOAA Hurricane Research Division (HRD) surface wind analysis product. Results strongly suggest that without LT effects simulated VVV underestimates the observed VVV. LT increases the VVV, indicating that it plays a significant role in upper-ocean turbulence dynamics. Consistent with observations, the LES predicts a suppression of VVV near the hurricane eye due to wind-wave misalignment. However, this decrease is weaker and of shorter duration than that observed, potentially due to large-scale horizontal advection not present in the LES. Both observations and simulations are consistent with a highly variable upper ocean turbulence field beneath tropical cyclone cores. Bulk VVV, a TKE budget analysis, and anisotropy coefficient (ratio of horizontal to vertical velocity variances) profiles all indicate that LT is suppressed to levels closer to that of shear turbulence (ST) due to misaligned wind and wave fields. VVV approximately scales with the directional surface layer Langmuir number. Such a scaling provides guidance for the development of an upper-ocean boundary layer parameterization that explicitly depends on sea state

    Paroxysmal Dyskinesia in Border Terriers : Clinical, Epidemiological, and Genetic Investigations

    Get PDF
    Background: In the last decade, a disorder characterized by episodes of involuntary movements and dystonia has been recognized in Border Terriers. Objectives: To define clinical features of paroxysmal dyskinesia (PD) in a large number of Border Terriers and to study the genetics of the disease. Animals: 110 affected and 128 unaffected client-owned Border Terriers. Methods: A questionnaire regarding clinical characteristics of PD was designed at Utrecht University and the University of Helsinki. Thirty-five affected Border Terriers underwent physical examination and blood testing (hematology and clinical biochemistry). Diagnostic imaging of the brain was performed in 17 affected dogs and electroencephalograms (EEG) between episodes were obtained in 10 affected dogs. A genomewide association study (GWAS) was performed with DNA of 110 affected and 128 unaffected dogs. Results: One hundred forty-seven questionnaires were included in the study. The most characteristic signs during episodes were dystonia, muscle fasciculations, and falling over. The majority of owners believed that their dogs remained conscious during the episodes. A beneficial effect of anti-epileptic therapy was observed in 29 of 43 dogs. Fifteen owners changed their dogs' diet to a hypoallergenic, gluten-free diet, and all reported reasonable to good improvement of signs. Clinical examinations and diagnostic test results were unremarkable. The GWAS did not identify significantly associated chromosome regions. Conclusions and Clinical Importance: The survey results and EEG studies provided further evidence that the observed syndrome is a PD rather than epilepsy. Failure to achieve conclusive results by GWAS indicates that inheritance of PD in Border Terriers probably is complex.Peer reviewe

    The LatMix summer campaign : submesoscale stirring in the upper ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 1257–1279, doi:10.1175/BAMS-D-14-00015.1.Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.The bulk of this work was funded under the Scalable Lateral Mixing and Coherent Turbulence Departmental Research Initiative and the Physical Oceanography Program. The dye experiments were supported jointly by the Office of Naval Research and the National Science Foundation Physical Oceanography Program (Grants OCE-0751653 and OCE-0751734).2016-02-0

    Determining vertical water velocities from Seaglider

    No full text
    Vertical velocities in the world's oceans are typically small, less than 1 cm/s, posing a significant challenge to observation techniques. Seaglider, an autonomous profiling instrument, can be used to estimate vertical water velocity in the ocean to about half a centimeter per second. Using a Seaglider flight model and pressure observations, vertical water velocities are estimated along glider trajectories in the Labrador Sea before, during and after deep convection. Results indicate that vertical velocities in the stratified ocean agree with theoretical WKB-scaling of w, and in the turbulent mixed layer, scale with buoyancy and wind forcing. We estimate that accuracy is within 0.6 cm/s. Due to uncertainties in the flight model, velocities are poor near the surface and deep apogees, and during extended roll maneuvers. Some of this may be improved by using a dynamic flight model permitting acceleration, and by better constraining flight parameters through pilot choices during the mission
    corecore