12 research outputs found

    Methods for calculating Protection Equality for conservation planning

    Get PDF
    Protected Areas (PAs) are a central part of biodiversity conservation strategies around the world. Today, PAs cover c15% of the Earth’s land mass and c3% of the global oceans. These numbers are expected to grow rapidly to meet the Convention on Biological Diversity’s Aichi Biodiversity target 11, which aims to see 17% and 10% of terrestrial and marine biomes protected, respectively, by 2020. This target also requires countries to ensure that PAs protect an “ecologically representative” sample of their biodiversity. At present, there is no clear definition of what desirable ecological representation looks like, or guidelines of how to standardize its assessment as the PA estate grows. We propose a systematic approach to measure ecological representation in PA networks using the Protection Equality (PE) metric, which measures how equally ecological features, such as habitats, within a country’s borders are protected. Extending research in Barr et al. (2011), we present an R package and two Protection Equality (PE) measures; proportional to area PE, and fixed area PE, which measure the representativeness of a country’s PA network. We illustrate the PE metrics with two case studies: coral reef protection across countries and ecoregions in the Coral Triangle, and representation of ecoregions of six of the largest countries in the world. Our results provide repeatable transparency to the issue of representation in PA networks and provide a starting point for further discussion, evaluation and testing of representation metrics. They also highlight clear shortcomings in current PA networks, particularly where they are biased towards certain assemblage types or habitats. Our proposed metrics should be used to report on measuring progress towards the representation component of Aichi Target 11. The PE metrics can be used to measure the representation of any kind of ecological feature including: species, ecoregions, processes or habitats

    Catchment-specific element signatures in estuarine crocodiles (Crocodylus porosus) from the Alligator Rivers Region, northern Australia.

    Full text link
    The concentrations of Na, K, Ca, Mg, Ba, Sr, Fe, Al, Mn, Zn, Pb, Cu, Ni, Cr, Co, Se, U and Ti were determined in the osteoderms and/or flesh of estuarine crocodiles (Crocodylus porosus) captured in three adjacent catchments within the Alligator Rivers Region (ARR) of northern Australia. Results from multivariate analysis of variance showed that when all metals were considered simultaneously, catchment effects were significant (P < or = 0.05). Despite considerable within-catchment variability, linear discriminant analysis (LDA) showed that differences in elemental signatures in the osteoderms and/or flesh of C. porosus amongst the catchments were sufficient to classify individuals accurately to their catchment of occurrence. Using cross-validation, the accuracy of classifying a crocodile to its catchment of occurrence was 76% for osteoderms and 60% for flesh. These data suggest that osteoderms provide better predictive accuracy than flesh for discriminating crocodiles amongst catchments. There was no advantage in combining the osteoderm and flesh results to increase the accuracy of classification (i.e. 67%). Based on the discriminant function coefficients for the osteoderm data, Ca, Co, Mg and U were the most important elements for discriminating amongst the three catchments. For flesh data, Ca, K, Mg, Na, Ni and Pb were the most important metals for discriminating amongst the catchments. Reasons for differences in the elemental signatures of crocodiles between catchments are generally not interpretable, due to limited data on surface water and sediment chemistry o
    corecore