223 research outputs found

    Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53

    Get PDF
    The destabilizing p53 cancer mutation Y220C creates an extended crevice on the surface of the protein that can be targeted by small-molecule stabilizers. Here, we identify different classes of small molecules that bind to this crevice and determine their binding modes by X-ray crystallography. These structures reveal two major conformational states of the pocket and a cryptic, transiently open hydrophobic subpocket that is modulated by Cys220. In one instance, specifically targeting this transient protein state by a pyrrole moiety resulted in a 40-fold increase in binding affinity. Molecular dynamics simulations showed that both open and closed states of this subsite were populated at comparable frequencies along the trajectories. Our data extend the framework for the design of high-affinity Y220C mutant binders for use in personalized anticancer therapy and, more generally, highlight the importance of implementing protein dynamics and hydration patterns in the drug-discovery process

    Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial

    Full text link
    This article provides a high-level overview of some recent works on the application of quasi-Monte Carlo (QMC) methods to PDEs with random coefficients. It is based on an in-depth survey of a similar title by the same authors, with an accompanying software package which is also briefly discussed here. Embedded in this article is a step-by-step tutorial of the required analysis for the setting known as the uniform case with first order QMC rules. The aim of this article is to provide an easy entry point for QMC experts wanting to start research in this direction and for PDE analysts and practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661

    Wavelet boundary element methods – Adaptivity and goal-oriented error estimation

    Get PDF
    This article is dedicated to the adaptive wavelet boundary element method. It computes an approximation to the unknown solution of the boundary integral equation under consideration with a rate Ndof−sN^{−s}_{dof}, whenever the solution can be approximated with this rate in the setting determined by the underlying wavelet basis. The computational cost scale linearly in the number NdofN_{dof} of degrees of freedom. Goal-oriented error estimation for evaluating linear output functionals of the solution is also considered. An algorithm is proposed that approximately evaluates a linear output functional with a rate Ndof−(s+t)N^{−(s+t)}_{dof}, whenever the primal solution can be approximated with a rate Ndof−sN^{-s}_{dof} and the dual solution can be approximated with a rate Ndof−tN^{−t}_{dof}, while the cost still scale linearly in NdofN_{dof}. Numerical results for an acoustic scattering problem and for the point evaluation of the potential in case of the Laplace equation are reported to validate and quantify the approach

    A Guide to Localized Frames and Applications to Galerkin-like Representations of Operators

    Full text link
    This chapter offers a detailed survey on intrinsically localized frames and the corresponding matrix representation of operators. We re-investigate the properties of localized frames and the associated Banach spaces in full detail. We investigate the representation of operators using localized frames in a Galerkin-type scheme. We show how the boundedness and the invertibility of matrices and operators are linked and give some sufficient and necessary conditions for the boundedness of operators between the associated Banach spaces.Comment: 32 page

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1d case

    Get PDF
    International audienceIn this paper we address some ill-posed problems involving the heat or the wave equation in one dimension, in particular the backward heat equation and the heat/wave equation with lateral Cauchy data. The main objective is to introduce some variational mixed formulations of quasi-reversibility which enable us to solve these ill-posed problems by using some classical La-grange finite elements. The inverse obstacle problems with initial condition and lateral Cauchy data for heat/wave equation are also considered, by using an elementary level set method combined with the quasi-reversibility method. Some numerical experiments are presented to illustrate the feasibility for our strategy in all those situations. 1. Introduction. The method of quasi-reversibility has now a quite long history since the pioneering book of Latt es and Lions in 1967 [1]. The original idea of these authors was, starting from an ill-posed problem which satisfies the uniqueness property, to introduce a perturbation of such problem involving a small positive parameter ε. This perturbation has essentially two effects. Firstly the perturbation transforms the initial ill-posed problem into a well-posed one for any ε, secondly the solution to such problem converges to the solution (if it exists) to the initial ill-posed problem when ε tends to 0. Generally, the ill-posedness in the initial problem is due to unsuitable boundary conditions. As typical examples of linear ill-posed problems one may think of the backward heat equation, that is the initial condition is replaced by a final condition, or the heat or wave equations with lateral Cauchy data, that is the usual Dirichlet or Neumann boundary condition on the boundary of the domain is replaced by a pair of Dirichlet and Neumann boundary conditions on the same subpart of the boundary, no data being prescribed on the complementary part of the boundary

    ITERATED QUASI-REVERSIBILITY METHOD APPLIED TO ELLIPTIC AND PARABOLIC DATA COMPLETION PROBLEMS

    Get PDF
    International audienceWe study the iterated quasi-reversibility method to regularize ill-posed elliptic and parabolic problems: data completion problems for Poisson's and heat equations. We define an abstract setting to treat both equations at once. We demonstrate the convergence of the regularized solution to the exact one, and propose a strategy to deal with noise on the data. We present numerical experiments for both problems: a two-dimensional corrosion detection problem and the one-dimensional heat equation with lateral data. In both cases, the method prove to be efficient even with highly corrupted data
    • …
    corecore