59 research outputs found
Successful large gene augmentation of USH2A with non-viral episomal vectors
USH2A mutations are a common cause of autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, for which there are currently no approved treatments. Gene augmentation is a valuable therapeutic strategy for treating many inherited retinal diseases; however, conventional adeno-associated virus (AAV) gene therapy cannot accommodate cDNAs exceeding 4.7 kb, such as the 15.6-kb-long USH2A coding sequence. In the present study, we adopted an alternative strategy to successfully generate scaffold/matrix attachment region (S/MAR) DNA plasmid vectors containing the full-length human USH2A coding sequence, a GFP reporter gene, and a ubiquitous promoter (CMV or CAG), reaching a size of approximately 23 kb. We assessed the vectors in transfected HEK293 cells and USH2A patient-derived dermal fibroblasts in addition to ush2au507 zebrafish microinjected with the vector at the one-cell stage. pS/MAR-USH2A vectors drove persistent transgene expression in patient fibroblasts with restoration of usherin. Twelve months of GFP expression was detected in the photoreceptor cells, with rescue of Usher 2 complex localization in the photoreceptors of ush2au507 zebrafish retinas injected with pS/MAR-USH2A. To our knowledge, this is the first reported vector that can be used to express full-length usherin with functional rescue. S/MAR DNA vectors have shown promise as a novel non-viral retinal gene therapy, warranting further translational development
Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes
A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein–Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.</p
pEPito: a significantly improved non-viral episomal expression vector for mammalian cells
<p>Abstract</p> <p>Background</p> <p>The episomal replication of the prototype vector pEPI-1 depends on a transcription unit starting from the constitutively expressed <it>Cytomegalovirus </it>immediate early promoter (CMV-IEP) and directed into a 2000 bp long <it>matrix attachment region sequence </it>(MARS) derived from the human β-interferon gene. The original pEPI-1 vector contains two mammalian transcription units and a total of 305 CpG islands, which are located predominantly within the vector elements necessary for bacterial propagation and known to be counterproductive for persistent long-term transgene expression.</p> <p>Results</p> <p>Here, we report the development of a novel vector pEPito, which is derived from the pEPI-1 plasmid replicon but has considerably improved efficacy both <it>in vitro </it>and <it>in vivo</it>. The pEPito vector is significantly reduced in size, contains only one transcription unit and 60% less CpG motives in comparison to pEPI-1. It exhibits major advantages compared to the original pEPI-1 plasmid, including higher transgene expression levels and increased colony-forming efficiencies <it>in vitro</it>, as well as more persistent transgene expression profiles <it>in vivo</it>. The performance of pEPito-based vectors was further improved by replacing the CMV-IEP with the <it>human CMV enhancer/human elongation factor 1 alpha promoter </it>(hCMV/EF1P) element that is known to be less affected by epigenetic silencing events.</p> <p>Conclusions</p> <p>The novel vector pEPito can be considered suitable as an improved vector for biotechnological applications <it>in vitro </it>and for non-viral gene delivery <it>in vivo</it>.</p
A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein–Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.</p
Burning behaviour of rainscreen façades
Four reduced-height (5 m) BS 8414-1 façade flammability tests were conducted, three having mineral-filled aluminium composite material (ACM-A2) with polyisocyanurate (PIR) and phenolic (PF) foam and stone wool (SW) insulation, the fourth having polyethylene-filled ACM (ACM-PE) with PIR insulation. Each façade was constructed from a commercial façade engineer’s design, and built by practising façade installers. The ACM-PE/PIR façade burnt so ferociously it was extinguished after 13.5 min, for safety. The three ACM-A2 cladding panels lost their structural integrity, and melted away from the test wall, whereupon around 40% of both the combustible PIR and PF insulation burnt and contributed to the fire spread. This demonstrates why all façade products must be non-combustible, not just the outer panels. For the three ACM-A2 tests, while the temperature in front of the cavity was independent of the insulation, the temperatures within it varied greatly, depending on the insulation. The system using PF/A2 allowed fire to break through to the cavity first, as seen by a sharp increase in temperature after 17 min. For PIR/A2, the temperature increased sharply at 22 minutes, as the panel started to fall away from the wall. For SW/A2, no rapid temperature rise was observed
Delivery of non-viral naked DNA vectors to liver in small weaned pigs by hydrodynamic retrograde intrabiliary injection
Hepatic gene therapy by delivering non-integrating therapeutic vectors in newborns remains challenging due to the risk of dilution and loss of efficacy in the growing liver. Previously we reported on hepatocyte transfection in piglets by intraportal injection of naked DNA vectors. Here, we established delivery of naked DNA vectors to target periportal hepatocytes in weaned pigs by hydrodynamic retrograde intrabiliary injection (HRII). The surgical procedure involved laparotomy and transient isolation of the liver. For vector delivery, a catheter was placed within the common bile duct by enterotomy. Under optimal conditions, no histological abnormalities were observed in liver tissue upon pressurized injections. The transfection of hepatocytes in all tested liver samples was observed with vectors expressing luciferase from a liver-specific promoter. However, vector copy number and luciferase expression were low compared to hydrodynamic intraportal injection. A 10-fold higher number of vector genomes and luciferase expression was observed in pigs using a non-integrating naked DNA vector with the potential for replication. In summary, the HRII application was less efficient (i.e., lower luciferase activity and vector copy numbers) than the intraportal delivery method but was significantly less distressful for the piglets and has the potential for injection (or re-injection) of vector DNA by endoscopic retrograde cholangiopancreatography
An episomal DNA vector platform for the persistent genetic modification of pluripotent stem cells and their differentiated progeny
The genetic modification of stem cells (SCs) is typically achieved using integrating vectors, whose potential integrative genotoxicity and propensity for epigenetic silencing during differentiation limit their application. The genetic modification of cells should provide sustainable levels of transgene expression, without compromising the viability of a cell or its progeny. We developed nonviral, nonintegrating, and autonomously replicating minimally sized DNA nanovectors to persistently genetically modify SCs and their differentiated progeny without causing any molecular or genetic damage. These DNA vectors are capable of efficiently modifying murine and human pluripotent SCs with minimal impact and without differentiation-mediated transgene silencing or vector loss. We demonstrate that these vectors remain episomal and provide robust and sustained transgene expression during self-renewal and targeted differentiation of SCs both in vitro and in vivo through embryogenesis and differentiation into adult tissues, without damaging their phenotypic characteristics
Smoke toxicity of rainscreen façades
The toxic smoke production of four rainscreen façade systems were compared during large-scale fire performance testing on a reduced height BS 8414 test wall. Systems comprising 'non-combustible' aluminium composite material (ACM) with polyisocyanurate (PIR), phenolic foam (PF) and stone wool (SW) insulation, and polyethylene-filled ACM with PIR insulation were tested. Smoke toxicity was measured by sampling gases at two points - the exhaust duct of the main test room and an additional 'kitchen vent', which connects the rainscreen cavity to an occupied area. Although the toxicity of the smoke was similar for the three insulation products with non-combustible ACM, the toxicity of the smoke flowing from the burning cavity through the kitchen vent was greater by factors of 40 and 17 for PIR and PF insulation respectively, when compared to SW. Occupants sheltering in a room connected to the vent are predicted to collapse, and then inhale a lethal concentration of asphyxiant gases. This is the first report quantifying fire conditions within the cavity and assessing smoke toxicity within a rainscreen façade cavity. [Abstract copyright: Copyright © 2020 Elsevier B.V. All rights reserved.
- …