346 research outputs found

    Situational judgment tests as measures of 21st century skills: Evidence across Europe and Latin America

    Get PDF
    Over the years, various governmental, employment, and academic organizations have identified a list of skills to successfully master the challenges of the 21st century. So far, an adequate assessment of these skills across countries has remained challenging. Limitations inherent in the use of self-reports (e.g., lack of self-insight, socially desirable responding, response style bias, reference group bias, etc.) have spurred on the search for methods that could complement or even substitute self-report inventories. Situational judgment tests (SJTs) have been proposed as one of the complements/alternatives to the traditional self-report inventories. SJTs are low-fidelity simulations that confront participants with multiple domain-relevant situations and request to choose from a set of predefined responses. Our objectives are twofold: (a) outlining how a combined emic-etic approach can be used for developing SJT items that can be used across geographical regions and (b) investigating whether SJT scores can be compared across regions. Our data come from Laureate International Universities (N = 5,790) and comprise test-takers from Europe and Latin America who completed five different SJTs that were developed in line with a combined emic-etic approach. Results showed evidence for metric measurement invariance across participants from Europe and Latin America for all five SJTs. Implications for the use of SJTs as measures of 21st century skills are discussed

    Eigenstates of a Small Josephson Junction Coupled to a Resonant Cavity

    Full text link
    We carry out a quantum-mechanical analysis of a small Josephson junction coupled to a single-mode resonant cavity. We find that the eigenstates of the combined junction-cavity system are strongly entangled only when the gate voltage applied at one of the superconducting islands is tuned to certain special values. One such value corresponds to the resonant absorption of a single photon by Cooper pairs in the junction. Another special value corresponds to a {\em two-photon} absorption process. Near the single-photon resonant absorption, the system is accurately described by a simplified model in which only the lowest two levels of the Josephson junction are retained in the Hamiltonian matrix. We noticed that this approximation does not work very well as the number of photons in the resonator increases. Our system shows also the phenomenon of ``collapse and revival'' under suitable initial conditions, and our full numerical solution agrees with the two level approximation result.Comment: 7 pages, and 6 figures. To be published in Phys. Rev.

    Benevolent characteristics promote cooperative behaviour among humans

    Full text link
    Cooperation is fundamental to the evolution of human society. We regularly observe cooperative behaviour in everyday life and in controlled experiments with anonymous people, even though standard economic models predict that they should deviate from the collective interest and act so as to maximise their own individual payoff. However, there is typically heterogeneity across subjects: some may cooperate, while others may not. Since individual factors promoting cooperation could be used by institutions to indirectly prime cooperation, this heterogeneity raises the important question of who these cooperators are. We have conducted a series of experiments to study whether benevolence, defined as a unilateral act of paying a cost to increase the welfare of someone else beyond one's own, is related to cooperation in a subsequent one-shot anonymous Prisoner's dilemma. Contrary to the predictions of the widely used inequity aversion models, we find that benevolence does exist and a large majority of people behave this way. We also find benevolence to be correlated with cooperative behaviour. Finally, we show a causal link between benevolence and cooperation: priming people to think positively about benevolent behaviour makes them significantly more cooperative than priming them to think malevolently. Thus benevolent people exist and cooperate more

    Resonant-Cavity-Induced Phase Locking and Voltage Steps in a Josephson Array

    Full text link
    We describe a simple dynamical model for an underdamped Josephson junction array coupled to a resonant cavity. From numerical solutions of the model in one dimension, we find that (i) current-voltage characteristics of the array have self-induced resonant steps (SIRS), (ii) at fixed disorder and coupling strength, the array locks into a coherent, periodic state above a critical number of active Josephson junctions, and (iii) when NaN_a active junctions are synchronized on an SIRS, the energy emitted into the resonant cavity is quadratic with NaN_a. All three features are in agreement with a recent experiment [Barbara {\it et al}, Phys. Rev. Lett. {\bf 82}, 1963 (1999)]}.Comment: 4 pages, 3 eps figures included. Submitted to PRB Rapid Com

    Dynamics of a Josephson Array in a Resonant Cavity

    Full text link
    We derive dynamical equations for a Josephson array coupled to a resonant cavity by applying the Heisenberg equations of motion to a model Hamiltonian described by us earlier [Phys. Rev. B {\bf 63}, 144522 (2001); Phys. Rev. B {\bf 64}, 179902 (E)]. By means of a canonical transformation, we also show that, in the absence of an applied current and dissipation, our model reduces to one described by Shnirman {\it et al} [Phys. Rev. Lett. {\bf 79}, 2371 (1997)] for coupled qubits, and that it corresponds to a capacitive coupling between the array and the cavity mode. From extensive numerical solutions of the model in one dimension, we find that the array locks into a coherent, periodic state above a critical number of active junctions, that the current-voltage characteristics of the array have self-induced resonant steps (SIRS's), that when NaN_a active junctions are synchronized on a SIRS, the energy emitted into the resonant cavity is quadratic in NaN_a, and that when a fixed number of junctions is biased on a SIRS, the energy is linear in the input power. All these results are in agreement with recent experiments. By choosing the initial conditions carefully, we can drive the array into any of a variety of different integer SIRS's. We tentatively identify terms in the equations of motion which give rise to both the SIRS's and the coherence threshold. We also find higher-order integer SIRS's and fractional SIRS's in some simulations. We conclude that a resonant cavity can produce threshold behavior and SIRS's even in a one-dimensional array with appropriate experimental parameters, and that the experimental data, including the coherent emission, can be understood from classical equations of motion.Comment: 15 pages, 10 eps figures, submitted to Phys. Rev.

    Genetic Structure of the Polymorphic Metrosideros (Myrtaceae) Complex in the Hawaiian Islands Using Nuclear Microsatellite Data

    Get PDF
    Five species of Metrosideros (Myrtaceae) are recognized in the Hawaiian Islands, including the widespread M. polymorpha, and are characterized by a multitude of distinctive, yet overlapping, habit, ecological, and morphological forms. It remains unclear, despite several previous studies, whether the morphological variation within Hawaiian Metrosideros is due to hybridization, genetic polymorphism, phenotypic plasticity, or some combination of these processes. The Hawaiian Metrosideros complex has become a model system to study ecology and evolution; however this is the first study to use microsatellite data for addressing inter-island patterns of variation from across the Hawaiian Islands.Ten nuclear microsatellite loci were genotyped from 143 individuals of Metrosideros. We took advantage of the bi-parental inheritance and rapid mutation rate of these data to examine the validity of the current taxonomy and to investigate whether Metrosideros plants from the same island are more genetically similar than plants that are morphologically similar. The Bayesian algorithm of the program structure was used to define genetic groups within Hawaiian Metrosideros and the closely related taxon M. collina from the Marquesas and Austral Islands. Several standard and nested AMOVAs were conducted to test whether the genetic diversity is structured geographically or taxonomically.The results suggest that Hawaiian Metrosideros have dynamic gene flow, with genetic and morphological diversity structured not simply by geography or taxonomy, but as a result of parallel evolution on islands following rampant island-island dispersal, in addition to ancient chloroplast capture. Results also suggest that the current taxonomy requires major revisions in order to reflect the genetic structure revealed in the microsatellite data
    • …
    corecore