35 research outputs found

    Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage

    Get PDF
    Excitotoxicity is a central pathological pathway in many neurological diseases with blood-brain barrier (BBB) dysfunction. Kainate, an exogenous excitotoxin, induces epilepsy and BBB damage in animal models, but the direct effect of kainate on brain endothelial cells has not been studied in detail. Our aim was to examine the direct effects of kainate on cultured cells of the BBB and to test three anti-inflammatory and antioxidant drugs used in clinical practice, simvastatin, edaravone and dexamethasone, to protect against kainate-induced changes.Primary rat brain endothelial cell, pericyte and astroglia cultures were used to study cell viability by impedance measurement. BBB permeability was measured on a model made from the co-culture of the three cell types. The production of nitrogen monoxide and reactive oxygen species was followed by fluorescent probes. The mRNA expression of kainate receptors and nitric oxide synthases were studied by PCR.Kainate damaged brain endothelial cells and made the immunostaining of junctional proteins claudin-5 and zonula occludens-1 discontinuous at the cell border indicating the opening of the barrier. The permeability of the BBB model for marker molecules fluorescein and albumin and the production of nitric oxide in brain endothelial cells were increased by kainate. Simvastatin, edaravone and dexamethasone protected against the reduced cell viability, increased permeability and the morphological changes in cellular junctions caused by kainate. Dexamethasone attenuated the elevated nitric oxide production and decreased the inducible nitric oxide synthase (NOS2/iNOS) mRNA expression increased by kainate treatment.Kainate directly damaged cultured brain endothelial cells. Simvastatin, edaravone and dexamethasone protected the BBB model against kainate-induced changes. Our results confirmed the potential clinical usefulness of these drugs to attenuate BBB damage

    Identification of Reference Genes for Circadian Studies on Brain Microvessels and Choroid Plexus Samples Isolated from Rats

    Get PDF
    Delivery of putative compounds of therapeutic value to the brain is limited by brain barriers: the blood–brain barrier located in the endothelium of the brain microvessels (BrMVs) and the blood–cerebrospinal fluid barrier located in the epithelium of the choroid plexus (ChP). Understanding their function and modulation by the circadian clock may enhance the efficacy of brain-targeting therapies. The aim of the present study was to evaluate the stability of 10 reference genes in the BrMV and ChP, isolated from male and female rats at six time points (ZT1, 5, 9, 13, 17, and 21). Gene evaluations were performed by qPCR, analyzed by RefFinder tool, and verified by analyzing the expression of the brain and muscle ARNT-like 1 (Bmal1) using the qPCR and digital PCR methods. We identified as the most stable genes for circadian studies tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and apolipoprotein E (Apoe) for BrMV, and beta actin (Actb) and hypoxanthine-guanine phosphoribosyltransferase (Hprt1) for ChP. After verification, ribosomal protein (Rps18) was also included as a sufficient reference gene. Additionally, the observed gender difference in the Bmal1 oscillations in both BrMV and ChP suggests that separate studies for each gender are recommended

    Design and Optimization of Nanostructured Lipid Carrier Containing Dexamethasone for Ophthalmic Use

    Get PDF
    The aim of this study was to perform a preformulation study of dexamethasone (DXM)-loaded nanostructured lipid carriers (NLCs) for ocular use. Lipid screening was applied to find the most suitable solid and liquid lipids and surfactant for the NLC formulation. The visual observation was proved with XRD measurements for the establishment of the soluble state of DXM. Thermoanalytical measurements indicated that the most relevant depression of the crystallinity index could be ensured when using a 7:3 solid lipid:oil ratio. In order to optimize the NLC composition, a 23 full factorial experimental design was used. It was established that each independent factor (lipid, DXM, and surfactant concentration) had a significant effect on the particle size while in the case of entrapment efficiency, the DXM and surfactant concentrations were significant. Lower surfactant and lipid concentrations could be beneficial because the stability and the entrapment efficacy of NLCs were more favorable. The toxicity tests on human cornea cells indicated good ophthalmic tolerability of NLCs. The in vitro drug release study predicted a higher concentration of the solute DXM on the eye surface while the Raman mapping penetration study on the porcine cornea showed a high concentration of nanocarriers in the hydrophylic stroma layer

    Cultured cells of the blood-brain barrier from apolipoprotein B-100 transgenic mice: effects of oxidized low-density lipoprotein treatment

    Get PDF
    BACKGROUND: The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. METHODS: Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood–brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. RESULTS: The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. CONCLUSION: The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate alterations in lipid composition which may be linked to the partial protection against oxLDL toxicity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12987-015-0013-y) contains supplementary material, which is available to authorized users

    Novel cyclic C5-curcuminoids penetrating the blood-brain barrier: design, synthesis and antiproliferative activity against astrocytoma and neuroblastoma cells

    Get PDF
    Novel series of cyclic C5-curcuminoids 17a-j and 19-22 were prepared as cytotoxic agents and evaluated against human neuroblastoma (SH-SY5Y) or human grade IV astrocytoma (CCF-STTG1) cell lines in low (∼0.1 nM - 10 nM) concentrations. Among the tested 21 derivatives, 16 displayed potent antiproliferative activity with IC50 values in the low nanomolar to picomolar range (IC50 = 7.483-0.139 nM). Highly active compounds like N-monocarboxylic derivative 19b with IC50 = 0.139 nM value against neuroblastoma and N-alkyl substituted 11 with IC50 = 0.257 nM against astrocytoma proved some degree of selectivity toward non-cancerous astrocytes and kidney cells. This potent anticancer activity did not show a strong correlation with experimental logPTLC values, but the most potent antiproliferative molecules 11-13 and 19-22 are belonging to discrete subgroups of the cyclic C5-curcuminoids. Compounds 12, 17c and 19b were subjected to blood-brain barrier (BBB) penetration studies, too. The BBB was revealed to be permeable for all of them but, as the apparent permeability coefficient (Papp) values mirrored, in different ratios. Lower toxicity of 12, 17c and 19b was observed toward primary rat brain endothelial cells of the BBB model, which means they remained undamaged under 10 µM concentrations. Penetration depends, at least in part, on albumin binding of 12, 17c and 19b and the presence of monocarboxylic acid transporters in the case of 19b. Permeation through the BBB and albumin binding, we described here, is the first example of cyclic C5-curcuminoids as to our knowledge
    corecore