11 research outputs found

    INVESTIGATION OF HEAT-AFFECTED ZONES OF THERMITE RAIL WELDINGS

    Get PDF
    The paper investigates the heat-affected zone (HAZ) of several rail joints executed by thermite rail welding (TW). The examined rail profile was 54E1 (UIC54). The rail steel categories were different: R260 and R400HT. The welding portions of the TWs fitted R350HT and R260 rail categories with normal welding gaps. The rail pieces were brand new, i.e., without any usage in the railway track. The authors executed Vickers-hardness tests (HV10) and material texture tests on the running surface of the rail head, as well as on slices cut from the rail head. The cutting was performed by the water jet method, five longitudinal direction slices with vertical cutting lines. The considered specimen lengths were 2×70 mm (i.e., 70 mm from the mid-point of the rail joint), however, the depths were 20 mm from the running surface. Therefore, the measuring spaces were 5 mm lengthwise and 2 mm in depth. The variation of the hardness values was determined considering the microstructures of the base steel material and the TW. For comparison, previously measured Elektrothermit SoW-5 and earlier own research were taken into consideration

    Identification of herpesvirus transcripts from genomic regions around the replication origins

    Get PDF
    Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a ‘super regulatory center’ in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries

    In-depth Temporal Transcriptome Profiling of Monkeypox and Host Cells using Nanopore Sequencing

    Get PDF
    The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level

    A törvénykezési gyakorlat megtestesülése jelenleg hazánkban a fogyatékos népesség munkavállalásában

    No full text
    Szoros kapcsolat létesült a fogyatékosok társadalma, és személyi identitásom között – rövidebben megfogalmazva, jómagam is a csoport része lettem, mozgásfogyatékossá váltam. A közelmúlt elkeserítő, és egyben reményteljes tapasztalatait is igyekeztem néhány oldal tömör leírásában összefoglalni

    Application of artificial neural networks for characterisation of formability properties of sheet metals

    No full text
    Artificial neural network models were developed to estimate forming limit diagrams from tensile test results based on our own experiments and data from the literature for steel and aluminium sheet metals. Experimental data were obtained from tensile tests and Nakazima tests. The input parameters used in the models were yield strength, ultimate tensile strength, uniform elongation, elongation at fracture, anisotropy coefficient and hardening exponent or combinations of these. The forming limit curves were defined by the measured minor and major strains using seven standard test specimens. After training the artificial neural network, the difference between measured and predicted results was evaluated by linear regression parameters and by the absolute errors. For steel sheet data taken from the literature, the estimated outputs of ANN models were compared with the results of empirical formulae developed by different authors. It was found that there was a high correlation coefficient between predicted and measured values for models using neural networks, which gave better approximations than other linear and non-linear models

    Effect of Roller Levelling on Tensile Properties of Aluminum Sheets

    No full text
    The straightening of sheets, bars and profiles plays an important role in many machining processes. The aim of sheet straightening in the rolling mill is to ensure that the deviation of sheets from flatness is within the tolerances specified in the standards or delivery conditions. There is a wide range of information available on the roller levelling process used to meet these quality requirements. However, little attention has been paid to the effects of levelling, namely the change in properties of the sheets before and after roller levelling. The aim of the present publication is to investigate how the levelling process affects tensile test results. The experiments have shown that levelling increases the yield strength of the sheet by 14–18%, while it decreases its elongation by 1–3% and hardening exponent by 15%. The mechanical model developed allows changes to be predicted, so that a plan can be made regarding roller levelling technology that has the least effect on the properties of the sheet while maintaining the desired dimensional accuracy

    Identification of herpesvirus transcripts from genomic regions around the replication origins

    No full text
    Abstract Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a ‘super regulatory center’ in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries
    corecore