6 research outputs found

    Increased localization of Majorana modes in antiferromagnetic chains on superconductors

    Full text link
    Magnet-superconductor hybrid (MSH) systems are a key platform for custom-designed topological superconductors. Ideally, the ends of a one-dimensional MSH structure will host Majorana zero-modes (MZMs), the fundamental unit of topological quantum computing. However, some of the experiments with ferromagnetic chains show a more complicated picture. Due to tiny gap sizes and hence long coherence lengths MZMs might hybridize and lose their topological protection. Recent experiments on a niobium surface have shown that both ferromagnetic and antiferromagnetic chains may be engineered, with the magnetic order depending on the crystallographic direction of the chain. While ferromagnetic chains are well understood, antiferromagnetic chains are less so. Here we study two models inspired by the niobium surface: a minimal model to elucidate the general topological properties of antiferromagnetic chains, and an extended model to more closely simulate a real system by mimicking the proximity effect. We find that in general for antiferromagnetic chains the topological gap is larger than for ferromagnetic ones and thus coherence lengths are shorter for antiferromagnetic chains, yielding more pronounced localization of MZMs in these chains. While topological phases for both ferromagnetic and antiferromagnetic chains both depend on the magnetic moment of the adatoms and the chemical potential, we find that antiferromagnetic chains also have a strong dependence on the magnitude of Rashba spin-orbit coupling at the surface.Comment: 12 pages,11 figure

    Do genetic factors protect for early onset lung cancer? A case control study before the age of 50 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset lung cancer shows some familial aggregation, pointing to a genetic predisposition. This study was set up to investigate the role of candidate genes in the susceptibility to lung cancer patients younger than 51 years at diagnosis.</p> <p>Methods</p> <p>246 patients with a primary, histologically or cytologically confirmed neoplasm, recruited from 2000 to 2003 in major lung clinics across Germany, were matched to 223 unrelated healthy controls. 11 single nucleotide polymorphisms of genes with reported associations to lung cancer have been genotyped.</p> <p>Results</p> <p>Genetic associations or gene-smoking interactions was found for <it>GPX1(Pro200Leu) </it>and <it>EPHX1(His113Tyr)</it>. Carriers of the Leu-allele of <it>GPX1(Pro200Leu) </it>showed a significant risk reduction of OR = 0.6 (95% CI: 0.4–0.8, p = 0.002) in general and of OR = 0.3 (95% CI:0.1–0.8, p = 0.012) within heavy smokers. We could also find a risk decreasing genetic effect for His-carriers of <it>EPHX1(His113Tyr) </it>for moderate smokers (OR = 0.2, 95% CI:0.1–0.7, p = 0.012). Considered both variants together, a monotone decrease of the OR was found for smokers (OR of 0.20; 95% CI: 0.07–0.60) for each protective allele.</p> <p>Conclusion</p> <p>Smoking is the most important risk factor for young lung cancer patients. However, this study provides some support for the T-Allel of <it>GPX1(Pro200Leu) </it>and the C-Allele of <it>EPHX1(His113Tyr) </it>to play a protective role in early onset lung cancer susceptibility.</p

    The Rise of Inclusive Political Institutions and Stronger Property Rights: Time Inconsistency Vs. Opacity.

    No full text
    corecore