14 research outputs found

    A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans

    Get PDF
    Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans

    Structure-Based Design of Novel Boronic Acid-Based Inhibitors of Autotaxin

    No full text
    Autotaxin (ATX) is a secreted phosphodiesterase that hydrolyzes the abundant phospholipid lysophosphatidylcholine (LPC) to produce lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in inflammation, fibrosis, and tumor progression, rendering ATX an attractive drug target. We recently described a boronic acid-based inhibitor of ATX, named HA155 (<b>1</b>). Here, we report the design of new inhibitors based on the crystal structure of ATX in complex with inhibitor <b>1</b>. Furthermore, we describe the syntheses and activities of these new inhibitors, whose potencies can be explained by structural data. To understand the difference in activity between two different isomers with nanomolar potencies, we performed molecular docking experiments. Intriguingly, molecular docking suggested a remarkable binding pose for one of the isomers, which differs from the original binding pose of inhibitor <b>1</b> for ATX, opening further options for inhibitor design

    Integrating chemical and genetic silencing strategies to identify host kinase-phosphatase inhibitor networks that control bacterial infection

    No full text
    Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more potential targets for manipulation in order to control bacterial infection, as exemplified by the observation that inhibiting the host kinase Akt supports the elimination of different intracellular bacteria including Salmonella and M. tuberculosis. If host kinases are involved in the control of bacterial infections, phosphatases could be as well. Here we present an integrated small interference RNA and small molecule screen to identify host phosphatase-inhibitor combinations that control bacterial infection. We define host phosphatases inhibiting intracellular growth of Salmonella and identify corresponding inhibitors for the dual specificity phosphatases DUSP11 and 27. Pathway analysis places many kinases and phosphatases controlling bacterial infection in an integrated pathway centered around Akt. This network controls host cell metabolism, survival, and growth and bacterial survival and reflect a natural host cell response to bacterial infection. Inhibiting two enzyme classes with opposite activities-kinases and phosphatases-may be a new strategy to overcome infections by antibiotic-resistant bacteria

    Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome

    Get PDF
    Item does not contain fulltextThe exon-junction complex (EJC) performs essential RNA processing tasks. Here, we describe the first human disorder, thrombocytopenia with absent radii (TAR), caused by deficiency in one of the four EJC subunits. Compound inheritance of a rare null allele and one of two low-frequency SNPs in the regulatory regions of RBM8A, encoding the Y14 subunit of EJC, causes TAR. We found that this inheritance mechanism explained 53 of 55 cases (P < 5 x 10(-228)) of the rare congenital malformation syndrome. Of the 53 cases with this inheritance pattern, 51 carried a submicroscopic deletion of 1q21.1 that has previously been associated with TAR, and two carried a truncation or frameshift null mutation in RBM8A. We show that the two regulatory SNPs result in diminished RBM8A transcription in vitro and that Y14 expression is reduced in platelets from individuals with TAR. Our data implicate Y14 insufficiency and, presumably, an EJC defect as the cause of TAR syndrome
    corecore