171 research outputs found

    Extensive Association of Common Disease Variants with Regulatory Sequence

    Get PDF
    Overlap between non-coding DNA regulatory sequences and common variant associations can help to identify specific cell and tissue types that are relevant for particular diseases. In a systematic manner, we analyzed variants from 94 genome-wide association studies (reporting at least 12 loci at p<5x10-8) by projecting them onto 466 epigenetic datasets (characterizing DNase I hypersensitive sites; DHSs) derived from various adult and fetal tissue samples and cell lines including many biological replicates. We were able to confirm many expected associations, such as the involvement of specific immune cell types in immune-related diseases and tissue types in diseases that affect specific organs, for example, inflammatory bowel disease and coronary artery disease. Other notable associations include adrenal glands in coronary artery disease, the immune system in Alzheimer's disease, and the kidney for bone marrow density. The association signals for some GWAS (for example, myopia or age at menarche) did not show a clear pattern with any of the cell or tissue types studied. In general, the identified variants from GWAS tend to be located outside coding regions. Altogether, we have performed an extensive characterization of GWAS signals in relation to cell and tissue-specific DHSs, demonstrating a key role for regulatory mechanisms in common diseases and complex traits

    Targeting lipid metabolism as a new therapeutic strategy for inherited cardiomyopathies

    Get PDF
    Inherited cardiomyopathies caused by pathological genetic variants include multiple subtypes of heart disease. Advances in next-generation sequencing (NGS) techniques have allowed for the identification of numerous genetic variants as pathological variants. However, the disease penetrance varies among mutated genes. Some can be associated with more than one disease subtype, leading to a complex genotype-phenotype relationship in inherited cardiomyopathies. Previous studies have demonstrated disrupted metabolism in inherited cardiomyopathies and the importance of metabolic adaptations in disease onset and progression. In addition, genotype- and phenotype-specific metabolic alterations, especially in lipid metabolism, have been revealed. In this mini-review, we describe the metabolic changes that are associated with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which account for the largest proportion of inherited cardiomyopathies. We also summarize the affected expression of genes involved in fatty acid oxidation (FAO) in DCM and HCM, highlighting the potential of PPARA-targeting drugs as FAO modulators in treating patients with inherited cardiomyopathies

    Systematic analysis of chromatin interactions at disease associated loci links novel candidate genes to inflammatory bowel disease

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have revealed many susceptibility loci for complex genetic diseases. For most loci, the causal genes have not been identified. Currently, the identification of candidate genes is predominantly based on genes that localize close to or within identified loci. We have recently shown that 92 of the 163 inflammatory bowel disease (IBD)-loci co-localize with non-coding DNA regulatory elements (DREs). Mutations in DREs can contribute to IBD pathogenesis through dysregulation of gene expression. Consequently, genes that are regulated by these 92 DREs are to be considered as candidate genes. This study uses circular chromosome conformation capture-sequencing (4C-seq) to systematically analyze chromatin-interactions at IBD susceptibility loci that localize to regulatory DNA. RESULTS: Using 4C-seq, we identify genomic regions that physically interact with the 92 DRE that were found at IBD susceptibility loci. Since the activity of regulatory elements is cell-type specific, 4C-seq was performed in monocytes, lymphocytes, and intestinal epithelial cells. Altogether, we identified 902 novel IBD candidate genes. These include genes specific for IBD-subtypes and many noteworthy genes including ATG9A and IL10RA. We show that expression of many novel candidate genes is genotype-dependent and that these genes are upregulated during intestinal inflammation in IBD. Furthermore, we identify HNF4α as a potential key upstream regulator of IBD candidate genes. CONCLUSIONS: We reveal many novel and relevant IBD candidate genes, pathways, and regulators. Our approach complements classical candidate gene identification, links novel genes to IBD and can be applied to any existing GWAS data

    Locational memory of macrovessel vascular cells is transcriptionally imprinted

    Get PDF
    Vascular pathologies show locational predisposition throughout the body; further insights into the transcriptomics basis of this vascular heterogeneity are needed. We analyzed transcriptomes from cultured endothelial cells and vascular smooth muscle cells from nine adult canine macrovessels: the aorta, coronary artery, vena cava, portal vein, femoral artery, femoral vein, saphenous vein, pulmonary vein, and pulmonary artery. We observed that organ-specific expression patterns persist in vitro, indicating that these genes are not regulated by blood flow or surrounding cell types but are likely fixed in the epigenetic memory. We further demonstrated the preserved location-specific expression of GATA4 protein in cultured cells and in the primary adult vessel. On a functional level, arterial and venous endothelial cells differed in vascular network morphology as the arterial networks maintained a higher complexity. Our findings prompt the rethinking of the extrapolation of results from single-origin endothelial cell systems

    Cardiorenal disease connection during post-menopause: The protective role of estrogen in uremic toxins induced microvascular dysfunction

    Get PDF
    Female gender, post-menopause, chronic kidney disease (CKD) and (CKD linked) microvascular disease are important risk factors for developing heart failure with preserved ejection fraction (HFpEF). Enhancing our understanding of the interrelation between these risk factors could greatly benefit the identification of new drug targets for future therapy. This review discusses the evidence for the protective role of estradiol (E2) in CKD-associated microvascular disease and related HFpEF. Elevated circulating levels of uremic toxins (UTs) during CKD may act in synergy with hormonal changes during post-menopause and could lead to coronary microvascular endothelial dysfunction in HFpEF. To elucidate the molecular mechanism involved, published transcriptome datasets of indoxyl sulfate (IS), high inorganic phosphate (HP) or E2 treated human derived endothelial cells from the NCBI Gene Expression Omnibus database were analyzed. In total, 36 genes overlapped in both IS- and HP-activated gene sets, 188 genes were increased by UTs (HP and/or IS) and decreased by E2, and 572 genes were decreased by UTs and increased by E2. Based on a comprehensive in silico analysis and literature studies of collected gene sets, we conclude that CKD-accumulated UTs could negatively impact renal and cardiac endothelial homeostasis by triggering extensive inflammatory responses and initiating dysregulation of angiogenesis. E2 may protect (myo)endothelium by inhibiting UTs-induced inflammation and ameliorating UTs-related uremic bleeding and thrombotic diathesis via restored coagulation capacity and hemostasis in injured vessels

    Joubert syndrome: genotyping a Northern European patient cohort

    No full text
    Joubert syndrome (JBS) is a rare neurodevelopmental disorder belonging to the group of ciliary diseases. JBS is genetically heterogeneous, with >20 causative genes identified to date. A molecular diagnosis of JBS is essential for prediction of disease progression and genetic counseling. We developed a targeted next-generation sequencing (NGS) approach for parallel sequencing of 22 known JBS genes plus 599 additional ciliary genes. This method was used to genotype a cohort of 51 well-phenotyped Northern European JBS cases (in some of the cases, Sanger sequencing of individual JBS genes had been performed previously). Altogether, 21 of the 51 cases (41%) harbored biallelic pathogenic mutations in known JBS genes, including 14 mutations not previously described. Mutations in C5orf42 (12%), TMEM67 (10%), and AHI1 (8%) were the most prevalent. C5orf42 mutations result in a purely neurological Joubert phenotype, in one case associated with postaxial polydactyly. Our study represents a population-based cohort of JBS patients not enriched for consanguinity, providing insight into the relative importance of the different JBS genes in a Northern European population. Mutations in C5orf42 are relatively frequent (possibly due to a Dutch founder mutation) and mutations in CEP290 are underrepresented compared with international cohorts. Furthermore, we report a case with heterozygous mutations in CC2D2A and B9D1, a gene associated with the more severe Meckel–Gruber syndrome that was recently published as a potential new JBS gene, and discuss the significance of this finding

    Genetic Basis of Dilated Cardiomyopathy in Dogs and Its Potential as a Bidirectional Model

    Get PDF
    Cardiac disease is a leading cause of death for both humans and dogs. Genetic cardiomyopathies, including dilated cardiomyopathy (DCM), account for a proportion of these cases in both species. Patients may suffer from ventricular enlargement and systolic dysfunction resulting in congestive heart failure and ventricular arrhythmias with high risk for sudden cardiac death. Although canine DCM has similar disease progression and subtypes as in humans, only a few candidate genes have been found to be associated with DCM while the genetic background of human DCM has been more thoroughly studied. Additionally, experimental disease models using induced pluripotent stem cells have been widely adopted in the study of human genetic cardiomyopathy but have not yet been fully adapted for the in-depth study of canine genetic cardiomyopathies. The clinical presentation of DCM is extremely heterogeneous for both species with differences occurring based on sex predisposition, age of onset, and the rate of disease progression. Both genetic predisposition and environmental factors play a role in disease development which are identical in dogs and humans in contrast to other experimental animals. Interestingly, different dog breeds have been shown to develop distinct DCM phenotypes, and this presents a unique opportunity for modeling as there are multiple breed-specific models for DCM with less genetic variance than human DCM. A better understanding of DCM in dogs has the potential for improved selection for breeding and could lead to better overall care and treatment for human and canine DCM patients. At the same time, progress in research made for human DCM can have a positive impact on the care given to dogs affected by DCM. Therefore, this review will analyze the feasibility of canines as a naturally occurring bidirectional disease model for DCM in both species. The histopathology of the myocardium in canine DCM will be evaluated in three different breeds compared to control tissue, and the known genetics that contributes to both canine and human DCM will be summarized. Lastly, the prospect of canine iPSCs as a novel method to uncover the contributions of genetic variants to the pathogenesis of canine DCM will be introduced along with the applications for disease modeling and treatment

    До мінералогії сезонних сульфатів мису Фіолент (Південно-Західний Крим)

    Get PDF
    Комплексом методів вивчено колекцію зразків вторинних мінералів одного з узбережних відслонень зони окиснення сульфідної мінералізації мису Фіолент (Південно-Західний Крим). Установлено, що всі досліджені зразки є полімінеральними утвореннями, в яких одночасно співіснують у різних пропорціях сульфати Mg, Al, Fe²⁺, Fe³⁺, Ca тощо: пікерингіт (найпоширеніший), пікерингіт залізистий, гексагідрит, старкіїт, епсоміт, алуноген, ботріоген, копіапіт, ярозит, гіпс та ін. Старкіїт і ботріоген у Криму виявлено вперше.The collection of secondary minerals from one of littoral occurrences of sulphide zone of oxidation of the Fiolent Cape (South-Western Crimea) is studied by different methods. It was established that all studied samples were polymineral formations which consisted of sulphates of Mg, Al, Fe²⁺, Fe³⁺, Ca, etc. in different proportions: pickeringite (the most wide-spread), ferropickeringite, hexahydrite, starkeyite, epsomite, alunogen, botryogen, copiapite, jarosite, gypsum etc. Starkeyite and botryogen are detected in the Crimea for the first time

    P62-positive aggregates are homogenously distributed in the myocardium and associated with the type of mutation in genetic cardiomyopathy

    Get PDF
    © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd Genetic cardiomyopathy is caused by mutations in various genes. The accumulation of potentially proteotoxic mutant protein aggregates due to insufficient autophagy is a possible mechanism of disease development. The objective of this study was to investigate the distribution in the myocardium of such aggregates in relation to specific pathogenic genetic mutations in cardiomyopathy hearts. Hearts from 32 genetic cardiomyopathy patients, 4 non-genetic cardiomyopathy patients and 5 controls were studied. Microscopic slices from an entire midventricular heart slice were stained for p62 (sequestosome-1, marker for aggregated proteins destined for autophagy). The percentage of cardiomyocytes with p62 accumulation was higher in cardiomyopathy hearts (median 3.3%) than in healthy controls (0.3%; P <.0001). p62 accumulation was highest in the desmin (15.6%) and phospholamban (7.2%) groups. P62 accumulation was homogeneously distributed in the myocardium. Fibrosis was not associated with p62 accumulation in subgroup analysis of phospholamban hearts. In conclusion, accumulation of p62-positive protein aggregates is homogeneously distributed in the myocardium independently of fibrosis distribution and associated with desmin and phospholamban cardiomyopathy. Proteotoxic protein accumulation is a diffuse process in the myocardium while a more localized second hit, such as local strain during exercise, might determine whether this leads to regional myocyte decay

    Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of total and detyrosinated α-tubulin were markedly higher in HCMSMP than in HCMSMN and controls. Higher tubulin detyrosination was also found in 2 unrelated MYBPC3 mouse models and its inhibition with parthenolide normalized contraction and relaxation time of isolated cardiomyocytes. CONCLUSIONS: Our findings indicate that microtubules and especially its detyrosination contribute to the pathomechanism of patients with HCMSMP. This is of clinical importance since it represents a potential treatment target to improve cardiac function in patients with HCMSMP, whereas a beneficial effect may be limited in patients with HCMSMN
    corecore