15 research outputs found

    The Effect of Element Types on Force Analogy Method Analysis

    Get PDF
    In this study, the seismic performance of a 2D portal frame subjected to the recorded seismic ground motions of the Northridge 1994 earthquake was evaluated by the force analogy method (FAM) with different element types. To increase the accuracy of FAM, Timoshenko (TS) elements were employed instead of the classical Euler Bernoulli (EB) elements, to revert the shear deformations that are neglected in EB elements. To perform evaluation, the same material and section properties were considered and the same portal frame was analyzed with different element lengths, from 0.5 to 7.0 m in 0.5 m steps

    A Novel Algorithm for Effective Vibration Control of Portal Frames

    Get PDF
    Severe vibrations such as earthquakes threaten to demolish or cause damage to built structures during their lifetime. Mitigation of such damage can be done by using control devices such as actuators. In this paper, an algorithm is proposed to analyze the nonlinear behavior of a portal frame supported by an actuator. The results were compared with those for a frame without actuator. The algorithm was developed in accordance with the Timoshenko beam element theory. ANSYS verified the results for the cases of a frame supported by a damper element and a frame without actuator. The results support the efficiency of the algorithm in reducing frame vibration and top-node displacement

    Simulation Model of The Collision Event of Submarine Mudflows Exerting A Horizontal Pipeline

    No full text
    The collision between submarine slide and sub-sea pipelines was simulated through laboratory experiment in order to investigate drag force exerted by mudflow on pipe surface. Mud model used was slurry of kaolin clay-water mixtures. Gravity flow concepts of fluid mechanics principles were implemented by lock-exchange system. It was developed through the laboratory equipment of rectangular channel to generate the mudflow in water ambient. A crosswise pipe stem positioned at certain run-out distance. It was collided by mudflow. The collision attributes of velocity (u), Reynolds number (Re), maximum drag force exerted by mudflow (Fdmax) and drag force coefficient (Cd) were observed based on ratio between water depth (at pipe position) and pipe diameter, abbreviated as H/d. Overall, higher H/d ratio generated higher values of collision attributes. H/d ratio variations had similar constant of Power-law model expression in Re-Cd relationship. It proved that H/d ratio had not effect to Cd very much. The current experiment also generated a high similarity trend line of Re-Cd relationship graph with the previous study. It indicated that the content of clay material (i.e. kaolin) play a major role in mudflow movement and collision, whereas granular materials (used in previous study) provide an extra density

    The Effect of Element Types on Force Analogy Method Analysis

    Get PDF
    In this study, the seismic performance of a 2D portal frame subjected to the recorded seismic ground motions of the Northridge 1994 earthquake was evaluated by the force analogy method (FAM) with different element types. To increase the accuracy of FAM, Timoshenko (TS) elements were employed instead of the classical Euler Bernoulli (EB) elements, to revert the shear deformations that are neglected in EB elements. To perform evaluation, the same material and section properties were considered and the same portal frame was analyzed with different element lengths, from 0.5 to 7.0 m in 0.5 m steps

    Study of regional monsoonal effects on landslide hazard zonation in Cameron Highlands, Malaysia

    No full text
    In general, landslides in Malaysia mostly occurred during northeast and southwest periods, two monsoonal systems that bring heavy rain. As the consequence, most landslide occurrences were induced by rainfall. This paper reports the effect of monsoonal-related geospatial data in landslide hazard modeling in Cameron Highlands, Malaysia, using Geographic Information System (GIS). Land surface temperature (LST) data was selected as the monsoonal rainfall footprints on the land surface. Four LST maps were derived from Landsat 7 thermal band acquired at peaks of dry and rainy seasons in 2001. The landslide factors chosen from topography map were slope, slope aspect, curvature, elevation, land use, proximity to road, and river/lake; while from geology map were lithology and proximity to lineament. Landslide characteristics were extracted by crossing between the landslide sites of Cameron Highlands and landslide factors. Using which, the weighting system was derived. Each landslide factors were divided into five subcategories. The highest weight values were assigned to those having the highest number of landslide occurrences. Weighted overlay was used as GIS operator to generate landslide hazard maps. GIS analysis was performed in two modes: (1) static mode, using all factors except LST data; (2) dynamic mode, using all factors including multi-temporal LST data. The effect of addition of LST maps was evaluated. The final landslide hazard maps were divided into five categories: very high risk, high risk, moderate, low risk, and very low risk. From verification process using landslide map, the landslide model can predict back about 13–16% very high risk sites and 70–93% of very high risk and high risk combined together. It was observed however that inclusion of LST maps does not necessarily increase the accuracy of the landslide model to predict landslide sites

    An approach for time-dependent reliability analysis of Jackup structures

    No full text
    This paper proposes an approach for evaluation of time dependent reliability of Jackup structures. An approach for signal processing using prolate spheroidal wave functions is combined with stochastic field representation method to represent ocean waves with least number of independent sources of uncertainty. First passage probability for dynamical systems subject to stochastic loading was then used in the formulation of the reliability approach. A simplified Jackup was modelled and used to demonstrate the time dependent reliability approach by propagating the uncertain wave load on the unit. In-house computer codes were developed for the analysis of the stochastic response in time-domain to obtain time dependent failure probabilities. The results were compared with those of a similar model in which the statistical method is used

    A Novel Algorithm for Effective Vibration Control of Portal Frames

    Get PDF
    Severe vibrations such as earthquakes threaten to demolish or cause damage to built structures during their lifetime. Mitigation of such damage can be done by using control devices such as actuators. In this paper, an algorithm is proposed to analyze the nonlinear behavior of a portal frame supported by an actuator. The results were compared with those for a frame without actuator. The algorithm was developed in accordance with the Timoshenko beam element theory. ANSYS verified the results for the cases of a frame supported by a damper element and a frame without actuator. The results support the efficiency of the algorithm in reducing frame vibration and top-node displacement

    Application of Land Use Changes Detection for Identification of Landslide Risk Areas in Pulau Penang using A Decade of Landsat 7 ETM+ Images

    No full text
    Landslide has been one of major natural threats in Penang Island, Malaysia. Rapid urban development and crop land expansion have encroached forest areas. Both activities are believed to have contributions to slope instability that can lead to landslide events. Using a decade of Landsat 7 ETM+ images, from 1999-2009, detection of land use changes can be carried out. This paper investigates the relation between land use changes and landslide sites. The images were subset to conform to main island of Penang Island state. Dark object correction, histogram equalizes, and histogram matching were applied to the images to remove atmospheric effect. Image to image registration was selected as geometric correction method by which the first image acquired in 27 December 1999 was used as a reference image. Normalized Difference Vegetation Index (NDVI), Tasseled Cap Transformation (TCT) and Principal Component Analysis (PCA) images were derived from corrected images. As for land use change detection technique, the image subtraction method was selected. Land use change detection was based on difference of multi date of NDVI, TCT, PCA and panchromatic images. As the final stage, detected land use changes were overlaid with landslide and hill project maps. As the result, most of landslide sites were located at changed areas as well as the hill project. NDVI and TCT greenness-based change detection gave better identification of changed areas followed by PC1, panchromatic and TCT-wetness

    Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles

    No full text
    Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT

    Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles

    No full text
    Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT
    corecore