1,838 research outputs found

    Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly

    Get PDF
    During mitosis, the nuclear envelope merges with the endoplasmic reticulum (ER), and nuclear pore complexes are disassembled. In a current model for reassembly after mitosis, the nuclear envelope forms by a reshaping of ER tubules. For the assembly of pores, two major models have been proposed. In the insertion model, nuclear pore complexes are embedded in the nuclear envelope after their formation. In the prepore model, nucleoporins assemble on the chromatin as an intermediate nuclear pore complex before nuclear envelope formation. Using live-cell imaging and electron microscope tomography, we find that the mitotic assembly of the nuclear envelope primarily originates from ER cisternae. Moreover, the nuclear pore complexes assemble only on the already formed nuclear envelope. Indeed, all the chromatin-associated Nup 107–160 complexes are in single units instead of assembled prepores. We therefore propose that the postmitotic nuclear envelope assembles directly from ER cisternae followed by membrane-dependent insertion of nuclear pore complexes

    Poor old pores-The challenge of making and maintaining nuclear pore complexes in aging

    Get PDF
    The nuclear pore complex (NPC) is the sole gateway to the nuclear interior, and its function is essential to all eukaryotic life. Controlling the functionality of NPCs is a tremendous challenge for cells. Firstly, NPCs are large structures, and their complex assembly does occasionally go awry. Secondly, once assembled, some components of the NPC persist for an extremely long time and, as a result, are susceptible to accumulate damage. Lastly, a significant proportion of the NPC is composed of intrinsically disordered proteins that are prone to aggregation. In this review, we summarize how the quality of NPCs is guarded in young cells and discuss the current knowledge on the fate of NPCs during normal aging in different tissues and organisms. We discuss the extent to which current data supports a hypothesis that NPCs are poorly maintained during aging of nondividing cells, while in dividing cells the main challenge is related to the assembly of new NPCs. Our survey of current knowledge points toward NPC quality control as an important node in aging of both dividing and nondividing cells. Here, the loss of protein homeostasis during aging is central and the NPC appears to both be impacted by, and to drive, this process

    Ionospheric conductivity dependence of dayside region-0, 1, and 2 field-aligned current systems: statistical study with DMSP-F7

    Get PDF
    The present study statistically examines the dependence of the intensities of dayside (MLT=8-12h) large-scale field-aligned currents (FACs) on the ionospheric conductance using the summary data of DMSP-F7 constructed by the procedure of Higuchi and Ohtani (2000). We have found that, in the dayside region, R1 and R0 have a higher correlation between ionospheric conductivity and FAC intensity than R2, suggesting that R0 and R1 are driven by a more voltage-like source than R2. This result is consistent with the idea that R1 and R0 are driven by the interaction between the solar wind and the open magnetospheric magnetic field. We have also found that dayside FAC intensities are latitudinally well balanced when they have a three sheet structure (R0, R1 and R2); on the other hand, for a two sheet structure (R1 and R2), the intensity of R1 is larger than that of R2, so that the net current has the polarity of R1

    Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water

    Get PDF
    ArticleJOURNAL OF HAZARDOUS MATERIALS. 165(1-3):266-270 (2009)journal articl
    • …
    corecore