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The nuclear pore complex (NPC) is the sole gateway to the nuclear interior,

and its function is essential to all eukaryotic life. Controlling the functional-

ity of NPCs is a tremendous challenge for cells. Firstly, NPCs are large

structures, and their complex assembly does occasionally go awry. Secondly,

once assembled, some components of the NPC persist for an extremely long

time and, as a result, are susceptible to accumulate damage. Lastly, a signifi-

cant proportion of the NPC is composed of intrinsically disordered proteins

that are prone to aggregation. In this review, we summarize how the quality

of NPCs is guarded in young cells and discuss the current knowledge on the

fate of NPCs during normal aging in different tissues and organisms. We

discuss the extent to which current data supports a hypothesis that NPCs

are poorly maintained during aging of nondividing cells, while in dividing

cells the main challenge is related to the assembly of new NPCs. Our survey

of current knowledge points toward NPC quality control as an important

node in aging of both dividing and nondividing cells. Here, the loss of pro-

tein homeostasis during aging is central and the NPC appears to both be

impacted by, and to drive, this process.

Introduction

One of the nine described universal hallmarks of aging

is the loss of protein homeostasis [1]. Loss of protein

homeostasis can result from changes in the biogenesis,

folding, trafficking, and degradation of proteins. The

cell’s ability to assemble and maintain functional pro-

tein complexes in aging is indeed compromised as

changes in protein complex stoichiometry were high-

lighted as one of the prominent changes found across

different aging organisms [2,3]. In baker’s yeast, the

nuclear pore complex (NPC; Box 1) is among the most

substoichiometric complexes in replicative aging cells

[2]. NPCs are the conserved gates to the nuclear interior

and essential to all life. A prominent function of NPCs

is to facilitate the transport of macromolecules from the

cytoplasm to the nucleus and vice versa. The proteins of

the core scaffold of NPCs are extremely long-lived in

Caenorhabditis elegans and in rat neurons [4–6], and

also in replicative aging yeast cells, the scaffold compo-

nents are long-lived [7]. Additionally, the transcription

of those core scaffold proteins is downregulated in dif-

ferentiated cells [4], suggesting that there is little synthe-

sis of new NPCs in differentiated cells. Phenylalanine-

Glycine-rich nucleoporins (FG-Nups), on the other

hand, often turn over quickly, especially in metazoan

cells [4,6,8] and to a lesser extent in yeast [7,9,10]. These

differences in turnover rates might make the NPC
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particularly sensitive to changes in protein homeostasis

in aging. The assembly of new NPCs is complex and

heavily dependent on the presence of the proper

amounts of NPC components and assembly factors.

Altogether, the biochemical properties of NPCs set

them at risk for age-related decline and, indeed, several

studies addressed age-related changes of the NPC, and/

or nucleocytoplasmic transport in aging [4,11–14].

In this review, we compare the age-related changes

in NPCs found in different model organisms and differ-

ent tissues and we further discriminate between aging

in nondividing cells (chronological aging) and aging in

dividing cells (replicative aging). For age-related dis-

eases caused by mutations to the NPC, or its support-

ing machinery, we refer to recent reviews [32–34]. We

compare specifically age-related changes in the abun-

dances of the components of the NPC (Nucleoporins

or Nups) as found in different proteome studies. The

changes in Nup abundances observed during replicative

and chronological aging of bakers’ yeast cells are dis-

tinct, indicating that dividing and nondividing cells

potentially face different challenges in NPC assembly

and maintenance, respectively. Based on our analysis

of Nups in aging, we discuss to what extent replicative

and chronological aging in baker’s yeast are suitable

models for the aging of tissues with faster turnover

rates, like liver, or long-lived tissues, like the brain. We

further speculate on what could be causal for the age-

related changes at the NPC. For this, we summarize

the current knowledge of the mechanisms of NPC

assembly and maintenance and point out open ques-

tions. In the last part of this review, we summarize how

NPCs could contribute to the hallmarks of aging.

On the search for common age-related
changes in NPCs of different cell
types

General considerations for the comparison of

aging profiles

In general, there is a large degree of conservation of

age-associated changes across different eukaryotic spe-

cies [1,35–39]. To investigate whether NPCs change in

Box 1. The structure and function of the nuclear pore complex at a glance

The NPC structure, recently reviewed in [15], is made of ~ 30 different proteins, called Nucleoporins or Nups, that

are present in multiple copies (Fig. 1). Each NPC is composed of eight spokes, which are arranged to form a cylindri-

cal structure embedded in the nuclear envelope (NE) membranes. Each spoke is interconnected by flexible linker ele-

ments that probably give the NPC strength and flexibility at the same time [16–18]. The core of the NPC is organized

by stably folded proteins in symmetric inner and outer rings and is anchored to the NE by transmembrane proteins.

The outer rings are mainly formed by a protein complex called the Y-shaped complex. Attached to the cytoplasmic

side of the symmetric core is a structure called the RNA export platform (also called ‘cytoplasmic filaments’).

Attached to the nuclear side of the symmetric core is the nuclear basket, which is involved in nucleocytoplasmic

transport, RNA processing, and RNA export, but also serves as a multifunctional platform for various nuclear pro-

cesses (e.g., transcriptional and chromatin organization). Both structures, the RNA export platform and the nuclear

basket, are involved in RNA processing and RNA export. In the center of the core scaffold are intrinsically disor-

dered (ID) proteins that form the selective barrier of the NPC, the FG-Nups. A decrease in the concentration of FG-

Nups in the center of the NPC compromises the permeability barrier and active transport rates of the NPC [19–21].

Rapid and energy-dependent transport across the NE is facilitated by the NPC and several transport factors (re-

viewed in [22–26]). The energy-dependent translocation of macromolecules between the nucleus and the cytoplasm is

facilitated by nuclear transport receptors (NTRs) and the GTP binding Ras-related nuclear protein (Ran). There are

17 different NTRs known in yeast [27], and about 30 NTRs are known in humans [28]. For many proteins that are

transported either to the nucleus or the cytoplasm, their respective NTRs remain to be identified. In addition, other

transport mechanisms can be utilized for transport; for example, the energy for nuclear export of most mRNA is pro-

vided by ATP hydrolysis on DEAD-box helicases [25].

Proteins that require nuclear import encode a nuclear localization signal (NLS) and are recognized in the cytoplasm

by NTRs called importins. Proteins that require nuclear export encode a nuclear export signal (NES) and are recog-

nized in the nucleoplasm by NTRs called exportins. For proteins without an NLS/NES targeting signal, the NPC

acts as a diffusion barrier. Generally, it can be stated that the size and surface properties of a molecule determine

how easily a molecule can diffuse between nucleus and cytoplasm [19,21,29].
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similar ways in aging cells and tissues from different

species, we extracted data on the abundance of Nups

from six published proteome datasets, derived from

aging budding yeast [2,40], rat [3], and mouse [41].

The studies using baker’s yeast addressed proteome

changes that occur during aging in nondividing cells,

chronological aging (Fig. 2A) [40], and in dividing

cells, replicative aging (Fig. 2B) [2]. The studies with

rats focused on age-related changes in brain and liver

tissues, and those with mice studied age-related

changes in brain and muscle tissues. All three tissues

are primarily composed of postmitotic cells. The

majority of brain cells are extremely long-lived, and

the brain has a very limited regenerative capacity [42].

The liver, on the other hand, has high regenerative

capacity, and liver cells are turned over regularly

[43,44]. Skeletal muscle is predominantly composed of

polynucleated muscle fibers that can regenerate when

injured [45].

The comparison of aging between different model

organisms is not trivial for four reasons. First, replica-

tive aging and chronological aging are measured in dif-

ferent units (number of divisions and time in

nondividing state) and different model organisms have

different maximal lifespans. Therefore, a fair way to

compare the different aging trajectories is to align

them based on the average survival of the population

(Fig. 2C). For the specific proteome studies of aging

yeast, mouse and rats [2,3,40,41] that we compare in

Fig. 3, we estimate, that the viability of the yeast

replicative aging population is about 55% at the last

time point measured (72 h, ~ 24 divisions) [2], the via-

bility of the yeast chronologically aged population is

~ 60% (after 21 days) [46], and the mice and rat

should have a survival of ~ 50–70% at the latest age

time points (24 months) [3,47,48]. Rat and mouse

strains used in the mentioned studies have similar lifes-

pans. Both aged samples were analyzed 24 months

after birth. However, the young mouse sample was

taken 3 months [41], and the rat sample was taken

6 months after birth [3]. Second, aging is a highly indi-

vidual process and analyzing only two or three animals

per sample will not cover the full spectrum of aging

changes in a population. Third, the age-related

changes in protein abundance as measured in a tissue

might be caused by age-related changes in the abun-

dances of specific cell types that compose a tissue

rather than reflecting changes in NPCs of one cell type

[49–51]. Lastly, different methods were used to prefrac-

tionate the mouse and rat samples, to do the mass

spectrometry, and to analyze the data. Most signifi-

cantly, the mouse and rat proteomes are from fraction-

ated tissue samples, and specifically, the nuclear

fraction was analyzed, while the yeast samples contain

whole-cell extracts. Even taking these limitations into

account, there are interesting similarities and differ-

ences in the aging trajectories of NPCs that we will

highlight in the following sections.

Fig. 1. Cartoon representation, adapted from [17], of the main structural features of NPCs and conserved proteins between baker’s yeast

(Saccharomyces cerevisiae) and humans. The main structural components (RNA export platform, outer rings, membrane ring, inner rings,

and nuclear basket, as well as the eight-fold rotational symmetry of these structures) are conserved from yeast to humans [30]. The outer

rings are composed of Y-shaped complexes; yeast NPCs have a total of two outer rings, one on the cytoplasmic and one on the nuclear

side respectively. Humans have a total of four outer rings, two on the cytoplasmic side and two on the nuclear side. Human NPCs are

considerably larger in their dimensions and their molecular mass (not shown) than yeast NPCs. The position of Nups within the NPC and

their stoichiometry are best known in the yeast NPC (e.g., in [17,31]). Pom33, Nup2, Gle2, Dyn2 are dynamic or have prominent alternative

locations or functions but also several bona fine Nups have roles away from the NPC. Most notably, the outer ring proteins Sec13 and Seh1

are also components of the COPII vesicle coat, and the membrane protein Ndc1 is also at the spindle pole body. Names of functional

homologs within a structural component have the same color (e.g., the inner ring proteins Nic96-Nup93, or Nup53-Nup59-Nup35). Nups that

are unique for either yeast or human are written in orange font. #ELYS is only present in the outer rings at the nuclear side.
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Loss of stoichiometry of NPC components

Loss of protein complex stoichiometry, in general, is a

conserved phenotype of aging [2,3], and NPCs are

among the most substoichiometric protein complexes

in replicative aged yeast cells [2]. The rat liver and

brain and the yeast replicative aging and chronological

aging proteome datasets have a reasonable coverage of

the NPC components (22, 32, and 24 Nups are

reported in the rat, yeast chronological aging, and

replicative aging datasets, respectively), so that we can

assess whether the NPCs become similarly substoichio-

metric in these aging cells and tissues.

The comparison of the changes in Nup abundances

in the proteome datasets shows that loss of Nup stoi-

chiometry is most pronounced in yeast replicative

aging cells, followed by yeast chronological aging cells

and aging rat brain tissue. In the rat liver tissue, the

stoichiometry of NPC proteins is most stable in aging

(Fig. 3A). While the datasets are not suitable to inter-

pret changes of individual Nups, the overall impres-

sion is that the loss of stoichiometry in NPCs is driven

by different changes in the different cells and tissues

(Fig. 3B,C). For example, a pairwise comparison of

changes in the abundance of Nups during yeast

replicative and chronological aging shows that the

majority of Nups building the NPC scaffold and mem-

brane ring show similar increases in abundance during

replicative and chronological aging (Fig. 3D). In con-

trast, the strong loss of several nuclear and central

FG-Nups is specific to replicative aging. Also, compar-

ing the proteomes of liver and brain samples, a major

conclusion of Ori et al. [3] was that the age-related

changes in protein abundance are tissue-specific in gen-

eral, and this seems to hold true for the Nups as well

(Fig. 3A,B).

Overall, the comparison of the changes in Nup

abundances in aging mice, rats, and replicative and

chronological aging yeast cells reveals that the NPC

becomes substoichiometric to different extents, most

strongly so in replicative aging yeasts, and that the

specific changes in Nup abundances are distinct in

each dataset.

Yeast as a model system to study the aging of

NPCs in higher eukaryotes

Yeast has been a powerful model in aging research for

many practical reasons [35,36,54,55]. Specifically, for

the proteomics studies discussed in this review, the

advantages are that the coverage of the Nups is higher

in yeast due to the relative simplicity of the proteome.

Also, the methods for cultivation of aging yeast cells

[2,40] allow the assessment of many time points in the

aging trajectory (12 in the case of Janssens et al. [2]),

which increases the confidence of observed changes.

Indeed, the comparison of the replicative aging pro-

teome with more targeted studies on the yeast NPC in

Fig. 2. Schematic representations of aging on the population and the

single-cell level. (A) Cartoon of a chronological aging baker’s yeast

cell. Chronological aging is the kind of aging that nondividing cells

experience in time before they die of old age. Chronological aging is

induced through the depletion of nutrients. Commonly used

protocols to achieve nutrient depletion include growing a cell culture

to a stationary phase or transferring an exponential culture to water

[52]. Acidification of the medium has been a cofounding factor in

some chronological aging studies [53]. Moreover, prolonged

starvation is a stress that postmitotic cells in higher eukaryotes do

not experience, and this should be considered when translating

results from chronological aging studies in Saccharomyces cerevisiae

to higher eukaryotes. A more involved way to induce chronological

aging, which overcomes the limitation of severe nutrient depletion in

yeast, is to provide the cells with just too little nutrients to divide,

called near-zero growth and which is performed in a retentostat [40].

(B) Cartoon of a replicative aging baker’s yeast cell. Dividing cells age

with each completed division, therefore their age is measured in the

number of completed divisions. Replicative aging in baker’s yeast is

triggered by the asymmetric retention of aging factors in the mother,

which causes the mother to age while the daughter cell is born

young. Age-induced damage can occur in the form of damaged and

nonfunctional organelles, ERCs, asymmetrically retained

transmembrane proteins and protein aggregates. (C) Cartoon of a

typical survival curve of a cohort of aging cells or organisms. Aging is

associated with an increased risk of mortality and there is intrinsic

variation in the lifespan of individual cells or organisms within one

cohort. As aging occurs at very different timescales, cross-species

comparisons of changes associated with aging, as well as

comparisons between chronological and replicative aging cells can be

based on the survival of the cohort.
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replicative aging (Table 1, Janssens et al. [2], Rempel

et al. [[11], and Lord et al. [13]) is overall consistent.

Such a level of consistency is currently not seen for the

analysis of rodent brain samples. It is, however,

important to address the question to what extent yeast

is suitable for aging studies of the NPC specifically.

General complications in the comparisons of aging

yeast cells with aging tissues in multicellular organisms

are that aging in yeast occurs on much shorter time-

scales, and also that aging experiments with yeast are

performed such that they report only replicative or

only chronological aging. This is not the case in multi-

cellular organisms, where cells are destined to carry

aspects of both chronological and replicative aging.

For example, blood hematopoietic stem cells may stay

quiescent for years before starting their replicative

lifespan [56] and, vice versa, postmitotic cells were

derived from stem cells that themselves experience

aspects of replicative aging. The most direct compar-

ison between the replicative and chronological aging

regimes in yeast would be on the cellular level, namely

with asymmetrically dividing mitotic cells, like stem

cells, and postmitotic cells, like neurons [54,55]. With

respect to the comparison in replicative aging, the

immortal yeast daughter lineage should be compared

to the self-renewing stem cell lineage. The yeast mother

cells and the differentiated cells both are both mortal

and retain damaged components [54,57–60].

These general considerations of how yeast replicative

and chronological aging may relate to aging in rodent

tissues are indeed somewhat reflected in the analysis of

age-related changes of NPC components as follows:

The age-related changes in Nup abundances in yeast

replicative aging correlate with those in aged rat liver,

where the shared loss of the basket Nups is the main

contributor to this correlation being significant

(Fig. 3E). The changes in yeast chronological aging do

not reach significance with any of the other datasets

but best correlate with those in mouse brain (Fig. 3E).

Overall, the age-related changes in Nups in replicative

Table 1. Key findings related to NPC composition and transport function in aging. ↓ indicates a decrease in protein abundance, while –

indicates no change in protein abundance was detected. The font colors indicates the location of the protein in the NPC, see Fig. 1: central

FG-Nups (green), inner ring (purple), outer ring (dark red), nuclear basket (gray), and RNA export platform (pink).

Study Model organism Nup protein abundances

Nup transcripts

abundances Transport phenotype

D’Angelo et al., 2009 [4] Caenorhabditis elegans

rat brain (24–28 month)

Nup93↓
FG-Nups↓
Nup107-

Nup93, Nup153

carbonylated

Downregulation of

scaffold Nups in

differentiated cells

Increased passive

permeability of the

NE of isolated nuclei

and intranuclear

tubulin bIII in vivo

Kim et al., 2010 [12] Senescent human

fibroblast (> 66 doublings)

Nup88↓
Nup107↓
Nup155↓

Nup50↓ Decreased transcript

levels of Nups, but

also importin a/ß

and Ran system

Fewer NPCs,

decreased

nucleocytoplasmic

transport,

unresponsive to

cell stimuli

Lord et al., 2015 [13] Saccharomyces cerevisiae,

replicative aging

(6–9 divisions)

Nup100–

Nup53–

Nup116↓

Nsp1↓ Stable transcript levels

of Nup100, nup53,

Nup116 and Nsp1

Decreased nuclear

accumulation of

different NLS-GFP

reporters at steady state

Rempel et al., 2019 [11] Saccharomyces cerevisiae

replicative aging

(multiple time points)

Nup100↓
Nup133–

Nup116↓
Nup2↓
Nup120 -

Increased nuclear

accumulation of

NLS-GFP reporters

and Rcc1 at steady

state and decreases

exclusion of NES-GFP

reporters, decreased

transport dynamics

of Msn2 shuttling

Janssens et al., 2015 [2] Saccharomyces cerevisiae

replicative aging

(12 time points)

Nup116↓↓
Nup2↓↓
Nsp1↓↓
Nup100↓
Nup60↓

Nup1↓
Mlp1↓
Gle2↓
15 others-

Stable transcript

levels for all Nups
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and chronological aging yeast models bear only a

weak resemblance to the current datasets describing

tissues that are generally considered to be aging

replicative (liver) and chronological (brain).

Potential causes for age-related
changes of NPCs: assembly and
maintenance of NPCs

Unique biochemical properties set NPCs at risk

in aging and aggregation pathologies

To understand what could be the cause for the dis-

tinct changes in the NPCs in different aging regimes

and cell types, we discuss how the NPC may be fac-

ing different challenges. Based on the fact that the

transcript levels of many Nups are stable in aging

(see Table 1), we discuss mostly posttranscriptional

aspects of NPC stability, namely NPC assembly and

NPC maintenance. First, the assembly of NPCs is a

complex process that occurs through two different

mechanisms recently reviewed in [15]. In higher

eukaryotes, NPCs and the NE disassemble at the start

of mitosis. Consequently, all NPCs need to be

reassembled into the reforming NE after each division

(postmitotic assembly). Organisms with closed mitosis

such as budding yeast, and interphase cells from

higher eukaryotes, assemble NPCs into the intact NE

(de novo or interphase assembly) [63]. Second, once

NPCs are functionally formed their maintenance is a

challenge. Parts of the NPC are long-lived and thus

susceptible to the accumulation of damage over time.

We discuss the importance of oxidative damage in

this context. Third, the ID FG-Nups readily self-asso-

ciate and aggregate [64–66] and we briefly discuss the

recently established connection between NPCs and

aggregation pathologies. Fourth, we discuss the cur-

rent knowledge about the mechanism for quality con-

trol of NPCs, an exciting new area of research [67–

69].

Two mechanisms of NPC assembly: interphase

assembly

Interphase assembly occurs into the intact NE; hence,

it is challenging to study as it requires detecting single

NPC assembly sites amidst the many fully formed

NPCs [70–72]. Scanning electron microscopy (EM)

studies using Xenopus egg extract reported that that

assembly begins with the formation and stabilization

of a hole (pore) in the NE [72]. A more recent study

showed transmission EM images of NPC interphase

assembly intermediates in mammalian cell lines [71].

These revealed that interphase assembly occurs

through the evagination of the inner nuclear mem-

brane (INM), which further deforms until it fuses with

the flat outer nuclear membrane (ONM). The site of

the deformed membrane is a mushroom-shaped, elec-

tron-dense mass of growing size [71].

It remains to be determined, in which order the

Nups exactly assemble, how the evagination of the

INM is achieved, which non-NPC components might

be involved in stabilizing the assembly intermediates

and which mechanism ultimately fuses INM and

ONM. The transmembrane proteins Sun1 and Pom121

establish where a new NPC is assembled, and Pom121

is part of the early assembly intermediate [73]. Nup153

and Nup53 are associated with these early assembly

intermediates [71]. The outer ring complexes probably

join the assembly later, potentially after the fusion of

INM and ONM [73]. The RNA export complex also

joins only later in NPC assembly [71], and assembly

problems are often associated with mislocalization of

proteins of this complex, while other Nups still localize

to the NE. Interphase assembly factors Heh1, Heh2,

Apq12, Brl1, Brr6, Rtn1, Rtn2, and Yop1 have been

studied in baker’s yeast [69,74,75] and assist in the

assembly process including the membrane fusion, but

it is not known in which steps of NPC assembly these

proteins are acting. Many NPCs are assembled during

interphase, which is regulated by the protein levels and

phosphorylation state of the basket protein Tpr.

Extracellular signal-regulated kinase phosphorylates

Tpr at the NPC, and while associated with the NPC, it

also phosphorylates Nup153. Phosphorylation of

Nup153 then prevents Nup153’s association with the

outer ring complex and blocks further NPC assembly

[76,77]. Cancer cells often have more NPCs [78], and

there is evidence suggesting that NPC numbers also

change in aging [3,54]. Interestingly, both yeast aging

datasets and the rat liver proteomes show that the

levels of the Mlp1/Tpr proteins (and the other basket

Nups human Nup50 and yeast Nup2) decrease relative

to the other Nups. As the absence of Tpr is reported

to increase NPC numbers [77], this could indicate that

more NPCs are assembled in aging. This is not in line

with the decline in NPC number reported in rat liver

[3], but it is in line with the overall increase in Nup

levels at the NE in yeast [11,54].

The effects of having too many or too few NPCs

are not well understood. Increasing numbers of NPCs

at the NE will result in an increase in passive diffusion

of molecules over the NE. The rate-limiting step for

NTR-dependent transport is the formation of a com-

plex between the NTR and its cargo: It takes time for

the NTR and cargo to find each other in the crowded
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cytosol, while the actual translocation through the

NPC is fast [79–81]. We thus speculate that a moder-

ate decrease in NPC numbers will not affect energy-de-

pendent transport. However, when NPC numbers are

greatly reduced (~ 50%), the number of NPCs

becomes rate-limiting and energy-dependent transport

rates were shown to drop [82].

In baker’s yeast, some of the proteins that assist

and monitor the assembly of NPCs are identified, but

their mechanism of action is only beginning to be

understood. Key players thus far identified are the

INM proteins Heh1 and Heh2, the NE-specific endo-

somal sorting complexes required for transport

(ESCRT)-III adaptor Chm7, and the ESCRT-III/

Fig. 3. Loss of overall NPC stoichiometry in different aging model systems: budding yeast [2,40], rat [3], and mouse [41]. (A) Fold changes

in abundance of Nups from different aging proteome data sets, comparing the changes in aged mice and rats (24 months, 50–70% viability)

and replicative aging yeast (Yeast RA; 72 h, 55% viability) and chronological aging yeast (Yeast CA; 60% viability). Fold changes of individual

Nups from each dataset are plotted as gray dots and are overlaid with a boxplot. 24, 32, 22, and 22 Nups were measured in the yeast RA,

yeast CA, rate liver, and rat brain samples, respectively. The red line depicts the median fold change and the boundaries of the box mark

the 25th and 75th percentile of fold changes in the dataset. The height of the box (IQR) is influenced by the spread within the middle 50%

of the data and is a robust measure of dispersion, that is, insensitive to outliers. The whiskers extend to the data points which are not

considered outliers, which are shown as black dots. (B) Comparison of age-related changes in Nup abundance of rat brain and rat liver.

None of the individual changes were reported significant according to the criteria of the authors [3]. (C) Comparison of age-related changes

in Nup abundance of mouse muscle and mouse brain. Only the change in Nup107 in muscle was reported significant according to the

criteria of the authors [41]. (D) Comparison of age-related changes in Nup abundance of yeast chronological at a time point of ~ 60%

population viability and yeast replicative aging at time points representing ~ 75 and 55% viability (45 h and 72 h). The replicative aging

proteome does not include information on the abundance of Mlp2, Nup57, Nup49, Nup59, Gle1, Nup42, and Dyn2, represented by an ‘x’ on

the x-axes. In the chronological aging datasets, the changes for Nsp1, Pom152, Ndc1, Nup57, Nup170, Nup188, Nup60 Nup157, Sec13,

Dyn2, Nup60 were reported significant according to the criteria of the authors [40]; the data for the first replicate are shown. For the

replicative aging dataset, no fold change statistics were reported but rather a noise threshold was applied to the time series datasets using

the coefficient of variation between replicates with a cutoff of 0.3, retaining only the most reproducible data [2]. The pronounced decrease

in abundance of Sec13 and Dyn2 during chronological aging may not reflect changes at the NPC but rather reflect their roles cell division

[61,62]. (E) Pearson correlations of pairwise comparisons of changes in Nup abundances in samples from different aging proteomes. The

number on top of the bars indicates the sample size of Nups that were used for the comparison. ** indicates a significant correlation with

P < 0.01. The correlation coefficient ranges from �1 to 1. Values close to �1 indicate negative, and values close to 1 indicate positive linear

relationships between two samples. Values close to 0 indicate that there is no linear relationship between two samples.
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Vps4 system (see Box 2) [68,69,83]. Interference with

this quality control mechanism results in the accumu-

lation of misassembled NPCs [69]. The proteins that

guard NPC assembly in baker’s yeast are conserved

in higher eukaryotes where Chmp7 and the ESCRT-

III system additionally have the important function

of resealing the NE at the end of mitosis [84]. In

baker’s yeast, several proteins that assist and control

the quality of NPC assembly decrease in abundance

during aging, and there are indications that aged

yeast cells experience problems with NPC assembly

(more details in Box 3).

Two mechanisms of NPC assembly: Postmitotic

assembly

Our knowledge concerning NPC assembly is derived

from different model organisms. The order in which

Nups assemble during postmitotic assembly has been

studied in Xenopus egg extract and fixed human cells

at different cell-cycle stages [88–92]. Additional struc-

tural insight comes from in vivo studies of rat and

human cell lines [93–96]. Postmitotic assembly of

NPCs happens in organisms with open mitosis upon

mitotic exit, in telophase. All NPCs reassemble simul-

taneously into small openings at the reforming NE

envelope during a short timeframe of only 5 min

[93,96]. The initiation of NPC assembly starts in late

anaphase with the association of ELYS with decon-

densing chromatin at the nuclear periphery [92]. The

Ran-GTP dependent release of Nups from importin ß

[97] allows the assembly of outer ring complexes,

which are then bound to chromatin by ELYS at NPC

assembly sites [92]. At this stage, Ndc1 and Pom121

are recruited to the assembly site to establish contact

with the reforming NE. Subsequently, the Nup93-com-

plex assembles at the prepore, which is followed by the

Nup62 complex and several (other) FG-Nups [98]. The

last components to join the reassembled NPCs are the

parts of the nuclear basket and the assembly of the

RNA export platform (cytoplasmic filaments) [89,93].

It was earlier noted that in dividing cells NPCs

might be renewed during reassembly after each divi-

sion [4,99]. Rat liver cells from old rats were character-

ized by decreased levels of several Nups suggesting an

overall reduction of NPCs. One explanation for the

reduced number of NPCs in the liver of aged rats is,

that the postmitotic assembly of NPCs might be an

opportunity for cells to clear up substoichiometric pro-

tein complexes, in line with this interpretation is also

the low interquartile region (IQR) of the aged rat liver

sample (Fig. 3). Such an opportunity does not apply

to the aging baker’s yeast cell, where the NE and

NPCs remain intact during the entire division. Indeed,

there is evidence in baker’s yeast, that replicative aged

cells have problems to correctly assemble NPCs, and

potentially also to clear misassembled NPCs from the

NE (Box 3) [11].

Mechanisms of NPC maintenance

In metazoans, the Nups have vastly different turnover

times. Among the group of particularly long-lived

Box 2. NPC quality control in baker’s yeast

Pioneering work from the Lusk laboratory has

revealed the first data on how cells deal with defective

NPC intermediates. Although it is early days, the data

support the following model for sealing off defective

NPCs and defective NPC intermediates: Their recogni-

tion is achieved through the loss of spatial separation

between the NE-specific ESCRT adaptor, Chm7, and

the INM protein Heh1 [83]. When Chm7 reaches the

nucleus, it binds to Heh1/Heh2, which allows sealing

off the defective NPC. Additionally, the interaction

allows the ESCRT machinery to assemble at the site

of the defective NPC [68,69]. The data further support

that successful clearance of the sealed off NPC from

the NE depends on ESCRT-III proteins Vps2, Vps24,

and Snf7, where Snf7 binds directly to Heh2 and

Chm7. Vps20 does not seem to be part of the nuclear

ESCRT-III complex [69], despite it being characterized

as part of the core ESCRT-III complex [85].

Based on the above, and knowledge of the ESCRT-III

membrane scission system, a possible scenario is that

upon Chm7 binding, Snf7 assembles into a polymer,

which is capped by Vps24. Vps24 then recruits Vps2

to the complex and promotes the assembly of a Vps4

hexamer at the site of the misassembled NPC. Vps4

disassembles the ESCRT-III complex while hydrolyz-

ing ATP. What kind of membrane remodeling is

needed to remove misassembled NPCs from the NE is

currently still unknown [86], but membrane remodel-

ing is normally achieved through the disassembly of

the Snf7 filament by Vps4 [85]. Surprisingly, this pro-

cess seems to be independent of the Vps4 cofactor,

Vta1, as no synthetic genetic interactions between

Vta1 and various tested Nups are found [69] raising

the question how effectively the filament are disassem-

bled [87]. Concerning the final degradation of the

misassembled NPC, there is evidence that the protea-

some and not the vacuolar peptidases play a role in

the degradation of Nup85 [69].
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Nups are Nup93, Nup96, Nup107, and Nup205, while

Nup133 has intermediate turnover times, and Pom121,

as well as FG-Nups, are replaced regularly [5,6,67].

The first insights into NPC maintenance in postmitotic

cells were only published recently [67]. This study

revealed two different mechanisms of NPC

Box 3. NPCs in replicative aging—a yeast perspective

Several studies in baker’s yeast showed that NPC components are present in substoichiometric amounts in replicative

aged cells. More specifically, a strong decrease in abundance (at the whole-cell level and at the NE) was observed for

the FG-Nups Nup116, Nsp1, and nuclear basket protein Nup2 [2,11,13] (Fig. 4A). On the single-cell level, the age-de-

pendent decrease in abundance of Nup116 and Nup100 at the NE was correlated to the lifespan of the cell, where

decreased levels correlated with less remaining lifespan [11]. The deletion of Nup100 was previously described to

extend the replicative lifespan, through an increase in cellular Gcn4 levels [13,100], illustrating that the full deletion

of a gene in young cells can have a very different outcome than the age-dependent decrease in abundance in old cells.

Overall, the changes in NPC stoichiometry during replicative aging are well documented and changes are consistent

between different studies.

Studies of the NPC assembly and quality control machinery show that the aging cells lose several components, which

normally ensure that NPCs are assembled correctly, or broken down if misassembled. Namely, Apq12, Brl1, Heh2,

and Vps4 showed decreased abundances in aging [11]. How these proteins influence the assembly of NPCs is still not

fully understood (Fig. 4B). Previous studies suggested that Apq12, Brl1, and Brr6 are primarily involved in lipid

homeostasis [101,102] and changes in lipid composition could cause NPC assembly defects. A more recent study

reports a more direct involvement in NPC assembly [75]. The decreased abundance of Apq12, Brl1, Heh2 and Vps4

thus suggests that NPCs in old cells misassemble more frequently and are less effectively cleared from the NE

(Fig. 4C). In aged cells, Chm7 foci, representing NPC assembly problems, indeed appear almost three times as fre-

quently as in young cells [11]. Misassembled NPCs and those that have extrachromosomal rDNA circles (ERCs) teth-

ered to their scaffold are asymmetrically retained by the mother cell [54,69,103]. Apq12, Brl1, and Brr6 are conserved

proteins in eukaryotes with closed mitosis. Although these proteins are not conserved on the sequence level in higher

eukaryotes, functional homologues may exist [86,104].

It is unclear whether the altered Nup levels in replicative aged cells are a cause or a consequence of misassembled

NPCs, or even of problems with NPC maintenance. The average Nup abundance at the NE, as measured using imag-

ing methods, for example, represents fully assembled functional NPCs, as well as potentially damaged NPCs and/or

misassembled NPCs with altered Nup composition. The loss of the FG-Nups (Nsp1, Nup116, and Nup2) may thus

reflect that there is a subset of misassembled NPCs that partially or fully lack those FG-Nups. These NPCs likely do

not contribute to transport, as NPCs lacking these specific Nups would increase the passive permeability of the NE,

and no such change is observed in aging [11]. Instead, these misassembled NPCs are likely covered by membranes

making them transport incompetent. The NE is often herniated at the site of membrane-covered NPCs. Indeed, her-

niations have been observed in specific mutants, for example, mutants lacking Nup116 [105], and they are enriched in

aged cells [11].

The changes in the populations of NPCs at the NE have functional consequences for the cell that are not fully under-

stood. Aged cells show increased nuclear compartmentalization of GFP-NLS and GFP-NES reporter proteins, as

well as an increase in nuclear localization of Rcc1-GFP [11]. Consistently, the shuttling transcription factor Msn2

shows decreased shuttling dynamics during aging and the decrease in shuttling is correlated to lifespan [11]. Lord

et al., [2,11,13] report loss of nuclear localization of GFP based reporters with different NLSs in aging. Apart from

technical differences (different yeast strains and methods of aging), we speculate that the results may also reflect dif-

ferent stages of the aging process. For example, a moderate reduction of NPCs early in life would cause increased

nuclear compartmentalization, as this may primarily decrease passive diffusion of the reporter proteins over the NE.

Only late in life, the number of NPCs may become rate-limiting for active transport. Several studies indicate that

changes in the permeability barrier and the steady-state localization of proteins are quite well tolerated by the cell

[13,20]. In contrast, even moderate changes in nuclear transport dynamics correlated to the remaining lifespan, sug-

gesting that changes in dynamics are detrimental for the cell as it interferes with their ability to react to its constantly

changing environment [11].

9The FEBS Journal (2020) ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

I. L. Rempel et al. Nuclear pore complex in aging



maintenance. Quiescent muscle cells maintain their

NPCs by the removal of whole NPCs from the NE in

an ESCRT dependent manner, which are subsequently

replaced by newly assembled NPCs [67]. Terminally

differentiated muscle cells maintain their NPCs by

piecemeal replacement of subunits, resulting in NPC

composed of Nups with different ages [67]. Future

studies will have to resolve whether the mechanisms

described for quality control during NPC assembly in

yeast [68,69] could also be used to identify damaged

NPCs in postmitotic cells. Alternatively, damaged

NPCs might be cleared as a whole through autophagy,

specifically through microautophagy at nuclear vacuo-

lar junctions or by selective autophagy. The possibility

that damaged NPCs are not cleared from the NE at

all in some cell types cannot be ruled out either. The

fact that at least two NPC maintenance mechanisms

exist, combined with the possibility that different cells

favor different mechanisms of NPC maintenance, will

contribute to the age-related differences in Nup abun-

dance across different model organisms and/or organ

tissues. Other outstanding questions are how damaged

NPCs are sensed, how cells control which NPCs or

NPC subunits are replaced, and what causes NPCs to

become damaged in time.

What could be sources of damage to NPCs in

aging?

The most frequent source of protein damage consid-

ered in aging is oxidative damage [106]. Replicative

and chronologically aged cells of diverse origins have

higher levels of reactive oxygen species (ROS) than at

young age, and show signs of oxidative stress [107,108].

Moreover, levels of carbonylated proteins, which are

caused by ROS, are increased in aged cells [109]. In

yeast, carbonylated proteins are retained by the mother

cell during division [110] contributing to her aging.

Oxidation of the amino acid side chains of lysine,

arginine, proline, and threonine causes these side

chains to be replaced by carbonyl groups. Carbonyla-

tion of those amino acids is irreversible and conse-

quently, carbonylated proteins are altered in their

charge and hydrophobicity impacting their synthesis,

stability, and functionality [111]. On the other hand,

ROS are also important intracellular signaling mole-

cules that can trigger protective responses [112–114].

The main source of intracellular ROS stems from

mitochondrial respiration [114]. Other sources of intra-

cellular ROS include NAD(P)H oxidases at the plasma

membrane, peroxisomes, D-amino acid oxidases in the

Fig. 4. Model of age-related changes at the NPC during yeast replicative aging [11]. (A) Summary of nuclear transport-related changes

occurring in replicative aging baker’s yeast cell, as measured in [2,11,13]: (a) The abundance of indicated FG-Nups and proteins assisting in

NPC assembly declines with replicative aging, (b) aged cells more frequently have NE herniations, and (c) nucleocytoplasmic exchange is

decreased in aged cells. (B) Schematic representation of NPC assembly and nuclear transport dynamics in young cells based on [68,69,83].

(C) Model: In aged cells, the decrease in the abundance of several proteins that assist in NPC assembly (indicated by faded cartoons)

causes the accumulation of misassembled NPCs in aged mother cells. Misassembled NPCs are covered with membrane and do not

participate in nucleocytoplasmic exchange. In other words, the overall number of transport competent NPCs is reduced in replicative aged

mother cells.
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cytoplasm, and disulfide bond formation at the ER

[114,115]. In yeast, the NADH oxidase orthologue

Yno1 additionally contributes to ROS formation at

the ER/NE network [116] and may be closest to the

NPCs. So, while it is clear that ROS and carbonyla-

tion contribute to age-dependent changes of cellular

systems, should we expect the NPC to be vulnerable to

oxidative damage and if so, how would this affect

nucleocytoplasmic transport?

D’Angelo et al. show in their 2009 paper that car-

bonyl groups can be detected on Nup93 and Nup153,

but not on Nup107 isolated from old rat brains. The

proteins that form the scaffold of the NPC might thus

be somewhat protected against oxidative damage. Car-

bonylation of the long-lived linker Nup93 might espe-

cially reduce the structural integrity of the NPC which

will cause NPCs to become more leaky with aging [4–

6,16,17,117]. A direct effect of carbonyl modification

of the FG-Nups on the permeability of NPCs is less

likely, as FG-Nups do not readily oxidize [11]. More-

over, based on coarse-grained molecular dynamics sim-

ulations [118], carbonyl modified FG-Nups show little

conformational changes compared to FG-Nups with-

out carbonyl modifications, suggesting that protein

carbonylation of FG-Nups has only a minor impact

on the permeability of the NPC [11]. Apart from the

impact that oxidative stress may have on the structure

of the NPC, there are effects on the Ran-GDP/GTP

gradient in the cell [119] that cause nucleocytoplasmic

transport rates to decrease under oxidative stress.

Altogether, oxidative stress impacts nuclear transport

[119] and carbonylation of Nup93 might reduce the

structural integrity of NPCs in aged cells, but direct

carbonylation of FG-Nups is not likely to play a role

in aging.

Instead, we suggest that the unique interior of the

NPC, with ultra-high concentrations of the disordered

FG-Nups, should be considered in the context of

aging. The FG-Nups may be at risk for aggregation in

aging as IDPs, including FG-Nups, are known to be

aggregation-prone [66,120] and protein aggregation in

general increases during aging [121,122]. IDPs, like the

FG-Nups, do not have a stable secondary or tertiary

structure. Instead, they exist in a large set of readily

interchangeable conformations. While we know well

how cells guard the structure of stably folded proteins

[123–127], we know virtually nothing about the mecha-

nisms that guard IDPs. IDPs, including IDPs related

to degenerative diseases such as Huntington’s disease

and amyloid lateral sclerosis, and FG-Nups, can phase

separate to form liquid-liquid demixed droplets [128]

or hydrogels [129–131] or aggregate to form amyloid

fibers [64–66,132–136].

During transport, NTRs modulate the biophysical

state of the disordered FG-Nups inside the NPC by

engaging in rapid binding and unbinding events

[22,137–140]. Recent data suggest that NTRs can also

modulate the biophysical state and toxicity of several

IDPs related to neurodegenerative diseases [134,141–

146]. Moreover, several repeat-proteins that are associ-

ated with neurodegenerative diseases are known to dis-

rupt nucleocytoplasmic transport [34,136,142,144,146–

149]. Altogether, these recent findings suggest that the

FG-Nups may be at risk in aging if NTR levels

become limiting, or if cells have a larger load of aggre-

gation-prone proteins that may sequester NPC compo-

nents into aberrant phase-separated states or

aggregates. A full understanding of the stability of the

disordered phase in normal aging is not available at

present, but considering the tight connection with

aggregation pathologies and NPCs, we consider this a

valuable research area for the future.

Outlook

In this review, we discuss that age-related changes at

the NPC and nucleocytoplasmic transport are diverse

in different tissues and model organisms and we have

tried to find potential reasons why the conserved aging

process might be so diverse at the level of the NPC.

We explain how NPC assembly might be challenging

for replicative aging cells and that NPC maintenance

might be challenging for chronologically aging cells. In

aging tissues, a mix of both will be observed depend-

ing on the regenerative capacity of the tissue. In addi-

tion, there are two different NPC assembly

mechanisms, and at least two different mechanisms of

NPC maintenance, adding another explanation why

age-related changes at the NPC might be diverse in

different cells. NPC interphase assembly and NPC

maintenance mechanisms are currently least under-

stood. In this context, the ESCRT-III system is partic-

ularly interesting to study because it is involved in

NPC assembly [69] and NPC maintenance [67]. Age-

dependent changes in ESCRT function could, there-

fore, impact NPC assembly in aging dividing cells and

NPC maintenance in chronological aging cells. At least

in replicative aging yeast, ESCRT function is likely to

be compromised by the drastically reduced abundance

of Vps4 and reduced levels of Heh2 at the NE [11],

but virtually nothing is known about ESCRT function

during aging in other replicative aging cells.

Nucleocytoplasmic transport is influenced by the

structure and numbers of NPCs, but also by the abun-

dance of NTRs and the Ran-GDP/GTP gradient. We

consider it likely that changes in nucleocytoplasmic
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transport or passive diffusion will cause changes in the

localization of proteins during aging. The overall

changes in nucleocytoplasmic transport might be mod-

erate because a full complement of nonfunctional

NPCs is not compatible with life. More research is

needed to understand how the nucleocytoplasmic

transport network operates and how changes in pro-

tein localization influence the aging process. It remains

to be established if a widespread mislocalization of

nuclear proteins could be causal to the loss of protein

homeostasis observed in many aggregation patholo-

gies.

The cell also uses NPCs as an anchoring point for

various processes, which may alter when the architec-

ture or number of NPCs changes in aging cells. For

example, NPCs play an important role in genome sta-

bility and organization [150]: they are used as sites of

gene activation [151–153] [reviewed in [147]], for

anchoring of eroded telomeres, ERCs [154], and repair

of DNA double-strand breaks [155–157]. More specu-

lative, changes in NPC number and architecture could

also change local protein degradation by the NPC-lo-

calized proteasome [158,159] or local translation of

NPC components [160]. We conclude that nuclear

pores, the physical gatekeepers to the nuclear interior,

may well represent an important gatekeeper in aging,

and boosting its quality control may provide opportu-

nities to increase resilience to aging and age-related

diseases.
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