4,781 research outputs found
N=1 super Yang-Mills on a (3+1) dimensional transverse lattice with one exact supersymmetry
We formulate =1 super Yang-Mills theory in 3+1 dimensions on a two
dimensional transverse lattice using supersymmetric discrete light cone
quantization in the large- limit. This formulation is free of fermion
species doubling. We are able to preserve one supersymmetry. We find a rich,
non-trivial behavior of the mass spectrum as a function of the coupling
, and see some sort of "transition" in the structure of a bound
state as we go from the weak coupling to the strong coupling. Using a toy model
we give an interpretation of the rich behavior of the mass spectrum. We present
the mass spectrum as a function of the winding number for those states whose
color flux winds all the way around in one of the transverse directions. We use
two fits to the mass spectrum and the one that has a string theory
justification appears preferable. For those states whose color flux is
localized we present an extrapolated value for for some low energy bound
states in the limit where the numerical resolution goes to infinity.Comment: 23(+2 for v3) pages, 19 figures; v2: a footnote added; v3: an
appendix, comments, references added. The version to appear PR
Fate of Vector Dominance in the Effective Field Theory
We reveal the full phase structure of the effective field theory for QCD,
based on the hidden local symmetry (HLS) through the one-loop renormalization
group equation including quadratic divergences. We then show that vector
dominance (VD) is not a sacred discipline of the effective field theory but
rather an accidental phenomenon peculiar to three-flavored QCD. In particular,
the chiral symmetry restoration in HLS model takes place in a wide phase
boundary surface, on which the VD is realized nowhere. This suggests that VD
may not be valid for chiral symmetry restoration in hot and/or dense QCD.Comment: 4 pages, 3 figures. One reference added. Minor modification to
shorten the manuscript. This is the version to appear in Physical Review
Letter
Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole
The center-of-mass energy of two particles colliding near the horizon of a
maximally rotating black hole can be arbitrarily high if the angular momentum
of either of the incident particles is fine-tuned, which we call a critical
particle. We study particle emission from such high-energy collision and
reaction in the equatorial plane fully analytically. We show that the
unconditional upper limit of the energy of the emitted particle is given by
218.6% of that of the injected critical particle, irrespective of the details
of the reaction and this upper limit can be realized for massless particle
emission. The upper limit of the energy extraction efficiency for this emission
as a collisional Penrose process is given by 146.6%, which can be realized in
the collision of two massive particles with optimized mass ratio. Moreover, we
analyze perfectly elastic collision, Compton scattering, and pair annihilation
and show that net positive energy extraction is really possible for these three
reactions. The Compton scattering is most efficient among them and the
efficiency can reach 137.2%. On the other hand, our result is qualitatively
consistent with the earlier claim that the mass and energy of the emitted
particle are at most of order the total energy of the injected particles and
hence we can observe neither super-heavy nor super-energetic particles.Comment: 22 pages, 3 figures, typos corrected, reference updated, accepted for
publication in Physical Review D, typos correcte
Acceleration of particles by rotating black holes: near-horizon geometry and kinematics
Nowadays, the effect of infinite energy in the centre of mass frame due to
near-horizon collisions attracts much attention.We show generality of the
effect combining two seemingly completely different approaches based on
properties of a particle with respect to its local light cone and calculating
its velocity in the locally nonrotaing frame directly. In doing so, we do not
assume that particles move along geodesics. Usually, a particle reaches a
horizon having the velocity equals that of light. However, there is also case
of "critical" particles for which this is not so. It is just the pair of usual
and critical particles that leads to the effect under discussion. The similar
analysis is carried out for massless particles. Then, critical particles are
distinguishable due to the finiteness of local frequency. Thus, both approach
based on geometrical and kinematic properties of particles moving near the
horizon, reveal the universal character of the effect.Comment: 8 page
Latent heat in the chiral phase transition
The chiral phase transition at finite temperature and density is discussed in
the framework of the QCD-like gauge field theory. The thermodynamical potential
is investigated using a variational approach. Latent heat generated in the
first-order phase transition is calculated. It is found that the latent heat is
enhanced near the tricritical point and is more than several hundred MeV per
quark.Comment: 6 pages, 3 figure
Field induced long-range-ordering in an S=1 quasi-one-dimensional Heisenberg antiferromagnet
We have measured the heat capacity and magnetization of the spin one
one-dimensional Heisenberg antiferromagnet NDMAP and constructed a magnetic
field versus temperature phase diagram. We found a field induced long-range
magnetic ordering. We have been successful in explaining the phase diagram
theoretically.Comment: 6 pages, 18 figure
Recent Developments of World-Line Monte Carlo Methods
World-line quantum Monte Carlo methods are reviewed with an emphasis on
breakthroughs made in recent years. In particular, three algorithms -- the loop
algorithm, the worm algorithm, and the directed-loop algorithm -- for updating
world-line configurations are presented in a unified perspective. Detailed
descriptions of the algorithms in specific cases are also given.Comment: To appear in Journal of Physical Society of Japa
On collisions with unlimited energies in the vicinity of Kerr and Schwarzschild black hole horizons
Two particle collisions close to the horizon of the rotating nonextremal
Kerr's and Schwarzschild black holes are analyzed. For the case of multiple
collisions it is shown that high energy in the centre of mass frame occurs due
to a great relative velocity of two particles and a large Lorentz factor. The
dependence of the relative velocity on the distance to horizon is analyzed, the
time of movement from the point in the accretion disc to the point of
scattering with large energy as well as the time of back movement to the Earth
are calculated. It is shown that they have reasonable order.Comment: 6 pages, 1 figure. arXiv admin note: significant text overlap with
arXiv:1105.154
A New Basis Function Approach to 't Hooft-Bergknoff-Eller Equations
We analytically and numerically investigate the 't Hooft-Bergknoff-Eller
equations, the lowest order mesonic Light-Front Tamm-Dancoff equations for
U(N_C) and SU(N_C) gauge theories. We find the wavefunction can be well
approximated by new basis functions and obtain an analytic formula for the mass
of the lightest bound state. Its value is consistent with the precedent
results.Comment: 16 pages, 3 figure
The effects of meson mixing on dilepton spectra
The effect of scalar and vector meson mixing on the dilepton radiation from
hot and dense hadronic matter is estimated in different isospin channels. In
particular, we study the effect of - and mixing and
calculate the corresponding rates. Effects are found to be significant compared
to standard - and - annihilations. While the mixing in
the isoscalar channel mostly gives a contribution in the invariant mass range
between the two-pion threshold and the peak, the isovector channel
mixing induces an additional peak just below that of the .
Experimentally, the dilepton signals from - mixing seem to be more
tractable than those from - mixing.Comment: 10 pages, 9 figure
- âŠ