4,633 research outputs found

    N=1 super Yang-Mills on a (3+1) dimensional transverse lattice with one exact supersymmetry

    Get PDF
    We formulate N{\cal N}=1 super Yang-Mills theory in 3+1 dimensions on a two dimensional transverse lattice using supersymmetric discrete light cone quantization in the large-NcN_c limit. This formulation is free of fermion species doubling. We are able to preserve one supersymmetry. We find a rich, non-trivial behavior of the mass spectrum as a function of the coupling gNcg\sqrt{N_c}, and see some sort of "transition" in the structure of a bound state as we go from the weak coupling to the strong coupling. Using a toy model we give an interpretation of the rich behavior of the mass spectrum. We present the mass spectrum as a function of the winding number for those states whose color flux winds all the way around in one of the transverse directions. We use two fits to the mass spectrum and the one that has a string theory justification appears preferable. For those states whose color flux is localized we present an extrapolated value for m2m^2 for some low energy bound states in the limit where the numerical resolution goes to infinity.Comment: 23(+2 for v3) pages, 19 figures; v2: a footnote added; v3: an appendix, comments, references added. The version to appear PR

    Fate of Vector Dominance in the Effective Field Theory

    Get PDF
    We reveal the full phase structure of the effective field theory for QCD, based on the hidden local symmetry (HLS) through the one-loop renormalization group equation including quadratic divergences. We then show that vector dominance (VD) is not a sacred discipline of the effective field theory but rather an accidental phenomenon peculiar to three-flavored QCD. In particular, the chiral symmetry restoration in HLS model takes place in a wide phase boundary surface, on which the VD is realized nowhere. This suggests that VD may not be valid for chiral symmetry restoration in hot and/or dense QCD.Comment: 4 pages, 3 figures. One reference added. Minor modification to shorten the manuscript. This is the version to appear in Physical Review Letter

    Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole

    Full text link
    The center-of-mass energy of two particles colliding near the horizon of a maximally rotating black hole can be arbitrarily high if the angular momentum of either of the incident particles is fine-tuned, which we call a critical particle. We study particle emission from such high-energy collision and reaction in the equatorial plane fully analytically. We show that the unconditional upper limit of the energy of the emitted particle is given by 218.6% of that of the injected critical particle, irrespective of the details of the reaction and this upper limit can be realized for massless particle emission. The upper limit of the energy extraction efficiency for this emission as a collisional Penrose process is given by 146.6%, which can be realized in the collision of two massive particles with optimized mass ratio. Moreover, we analyze perfectly elastic collision, Compton scattering, and pair annihilation and show that net positive energy extraction is really possible for these three reactions. The Compton scattering is most efficient among them and the efficiency can reach 137.2%. On the other hand, our result is qualitatively consistent with the earlier claim that the mass and energy of the emitted particle are at most of order the total energy of the injected particles and hence we can observe neither super-heavy nor super-energetic particles.Comment: 22 pages, 3 figures, typos corrected, reference updated, accepted for publication in Physical Review D, typos correcte

    Acceleration of particles by rotating black holes: near-horizon geometry and kinematics

    Full text link
    Nowadays, the effect of infinite energy in the centre of mass frame due to near-horizon collisions attracts much attention.We show generality of the effect combining two seemingly completely different approaches based on properties of a particle with respect to its local light cone and calculating its velocity in the locally nonrotaing frame directly. In doing so, we do not assume that particles move along geodesics. Usually, a particle reaches a horizon having the velocity equals that of light. However, there is also case of "critical" particles for which this is not so. It is just the pair of usual and critical particles that leads to the effect under discussion. The similar analysis is carried out for massless particles. Then, critical particles are distinguishable due to the finiteness of local frequency. Thus, both approach based on geometrical and kinematic properties of particles moving near the horizon, reveal the universal character of the effect.Comment: 8 page

    Latent heat in the chiral phase transition

    Get PDF
    The chiral phase transition at finite temperature and density is discussed in the framework of the QCD-like gauge field theory. The thermodynamical potential is investigated using a variational approach. Latent heat generated in the first-order phase transition is calculated. It is found that the latent heat is enhanced near the tricritical point and is more than several hundred MeV per quark.Comment: 6 pages, 3 figure

    Field induced long-range-ordering in an S=1 quasi-one-dimensional Heisenberg antiferromagnet

    Full text link
    We have measured the heat capacity and magnetization of the spin one one-dimensional Heisenberg antiferromagnet NDMAP and constructed a magnetic field versus temperature phase diagram. We found a field induced long-range magnetic ordering. We have been successful in explaining the phase diagram theoretically.Comment: 6 pages, 18 figure

    Recent Developments of World-Line Monte Carlo Methods

    Full text link
    World-line quantum Monte Carlo methods are reviewed with an emphasis on breakthroughs made in recent years. In particular, three algorithms -- the loop algorithm, the worm algorithm, and the directed-loop algorithm -- for updating world-line configurations are presented in a unified perspective. Detailed descriptions of the algorithms in specific cases are also given.Comment: To appear in Journal of Physical Society of Japa

    On collisions with unlimited energies in the vicinity of Kerr and Schwarzschild black hole horizons

    Full text link
    Two particle collisions close to the horizon of the rotating nonextremal Kerr's and Schwarzschild black holes are analyzed. For the case of multiple collisions it is shown that high energy in the centre of mass frame occurs due to a great relative velocity of two particles and a large Lorentz factor. The dependence of the relative velocity on the distance to horizon is analyzed, the time of movement from the point in the accretion disc to the point of scattering with large energy as well as the time of back movement to the Earth are calculated. It is shown that they have reasonable order.Comment: 6 pages, 1 figure. arXiv admin note: significant text overlap with arXiv:1105.154

    A New Basis Function Approach to 't Hooft-Bergknoff-Eller Equations

    Get PDF
    We analytically and numerically investigate the 't Hooft-Bergknoff-Eller equations, the lowest order mesonic Light-Front Tamm-Dancoff equations for U(N_C) and SU(N_C) gauge theories. We find the wavefunction can be well approximated by new basis functions and obtain an analytic formula for the mass of the lightest bound state. Its value is consistent with the precedent results.Comment: 16 pages, 3 figure

    The effects of meson mixing on dilepton spectra

    Get PDF
    The effect of scalar and vector meson mixing on the dilepton radiation from hot and dense hadronic matter is estimated in different isospin channels. In particular, we study the effect of σ\sigma-ω\omega and ρ−a0\rho-a_0 mixing and calculate the corresponding rates. Effects are found to be significant compared to standard π\pi-π\pi and KK-Kˉ{\bar K} annihilations. While the mixing in the isoscalar channel mostly gives a contribution in the invariant mass range between the two-pion threshold and the ω\omega peak, the isovector channel mixing induces an additional peak just below that of the ϕ\phi. Experimentally, the dilepton signals from ρ\rho-a0a_0 mixing seem to be more tractable than those from σ\sigma-ω\omega mixing.Comment: 10 pages, 9 figure
    • 

    corecore