205 research outputs found

    Identification of a mammalian vesicular polyamine transporter

    Get PDF
    Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-d-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H+. SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT)

    Imaging features of a myoepithelial carcinoma of the nasal cavity : A case report and literature review

    Get PDF
    Myoepithelial carcinoma of the nasal cavity is extremely rare. We report the case of a 66-year-old man with myoepithelial carcinoma of the nasal cavity. Computed tomography (CT) and magnetic resonance imaging revealed a lobulated soft tissue mass with central necrosis and hemorrhage, as well as an invasion of the skull base and left orbit. The patient presented with continuous nasal congestion and heavy head and had no elevated level of squamous cell carcinoma-related antigen. CT, magnetic resonance imaging, or 18F-fluorodeoxyglucose (FDG) positron emission tomography/CT revealed no evidence of a metastatic lesion. 18F-FDG accumulation in the tumor was inhomogeneous and moderate. Histopathological examination of the resected specimen confirmed a well-circumscribed solid tumor with septa, a small area of hemorrhage, and necrosis. The subsequent diagnosis was a myoepithelial carcinoma of the left nasal cavity. This case shows that nasal myoepithelial carcinoma might appear as a well-defined lobulated mass with hemorrhagic necrosis and intense contrast enhancement in the solid component. We conjecture that hemorrhagic necrosis and intense enhancement values may be potential markers of nasal myoepithelial carcinoma

    Nuclear abnormalities in aspirated thyroid cells and chromosome aberrations in lymphocytes of residents near the Semipalatinsk Nuclear Test Site

    Get PDF
    Chromosomal studies in peripheral lymphocytes from 63 residents near the Semipalatinsk nuclear test site, at ages of 52–63 years old, were performed in 2001–2002. A higher rate of chromosome aberrations was observed in the two contaminated villages, Dolon and Sarjal, compared with the control village, Kokpekti. Moreover, a relationship of frequency of cells with radiation induced chromosome aberrations and the previously estimated exposure dose was observed. Furthermore, apparent nuclear abnormalities (ANA) of thyroid follicular cells were studied in 30 out of 63 residents, who were examined for chromosome aberrations. A higher rate of ANA was also found in the residents in the exposed villages compared with those in the control village. These results suggest radiation effects both on the chromosomes in peripheral lymphocytes and on the follicular cells in the thyroid

    Nuclear abnormalities in aspirated thyroid cells and chromosome aberrations in lymphocytes of residents near the Semipalatinsk Nuclear Test Site

    Get PDF
    Chromosomal studies in peripheral lymphocytes from 63 residents near the Semipalatinsk nuclear test site, at ages of 52–63 years old, were performed in 2001–2002. A higher rate of chromosome aberrations was observed in the two contaminated villages, Dolon and Sarjal, compared with the control village, Kokpekti. Moreover, a relationship of frequency of cells with radiation induced chromosome aberrations and the previously estimated exposure dose was observed. Furthermore, apparent nuclear abnormalities (ANA) of thyroid follicular cells were studied in 30 out of 63 residents, who were examined for chromosome aberrations. A higher rate of ANA was also found in the residents in the exposed villages compared with those in the control village. These results suggest radiation effects both on the chromosomes in peripheral lymphocytes and on the follicular cells in the thyroid

    A novel COL4A1 variant associated with recurrent epistaxis and glioblastoma

    Get PDF
    COL4A1-related disorders are characterized by a higher incidence of cerebral hemorrhage than other hereditary cerebral small vessel diseases. Accumulating data have shown broad phenotypic variations, and extracerebral hemorrhages have been linked to these disorders. Moreover, the coexistence of neural tumors has been described. Here, we report a Japanese family with a novel COL4A1 variant, including a patient with recurrent epistaxis and glioblastoma

    Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening

    Get PDF
    Growth of petal cells is a basis for expansion and morphogenesis (outward bending) of petals during opening of carnation flowers (Dianthus caryophyllus L.). Petal growth progressed through elongation in the early stage, expansion with outward bending in the middle stage, and expansion of the whole area in the late stage of flower opening. In the present study, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1–DcXTH4) and three cDNAs encoding expansin (DcEXPA1–DcEXPA3) were cloned from petals of opening carnation flowers and characterized. Real-time reverse transcription-PCR analyses showed that transcript levels of XTH and expansin genes accumulated differently in floral and vegetative tissues of carnation plants with opening flowers, indicating regulated expression of these genes. DcXTH2 and DcXTH3 transcripts were detected in large quantities in petals as compared with other tissues. DcEXPA1 and DcEXPA2 transcripts were markedly accumulated in petals of opening flowers. The action of XTH in growing petal tissues was confirmed by in situ staining of xyloglucan endotransglucosylase (XET) activity using a rhodamine-labelled xyloglucan nonasaccharide as a substrate. Based on the present findings, it is suggested that two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) are associated with petal growth and development during carnation flower opening

    Reversibility of ischemic findings on 3-tesla magnetic resonance T2*-weighted image after recanalization

    Get PDF
    Ischemic vessel signs (IVS) can be detected on 3-tesla T2*-weighted magnetic resonance images as a vessel enlargement at the territory of acute ischemia caused by major vessel occlusion or stenosis. Here, we studied changes in IVS before and after recanalization by the administration of intravenous recombinant tissue plasminogen activator (IV rtPA), carotid artery stenting or percutaneous transluminal angioplasty in patients with major vessel occlusion or stenosis. We performed magnetic resonance imaging for all patients treated by IV rtPA at the time of admission, shortly after and 24-72 hours after treatment with IV rtPA. We reviewed the IVS to assess its natural course of IVS by assessing patients who did not recanalize. IVS tended to disappear after recanalization. Conversely, in patients without recanalization, IVS did not disappear shortly after IV rtPA ; rather, it disappeared 24-72 hours after IV rtPA, especially in the presence of complete infarction. Recanalization by IV rtPA or endovascular treatment contributed to improved clinical deficits or the prevention from further progression. IVS can be a parameter of misery perfusion and an important factor to detect the patients who have an indication of treatment for recanalization

    Impact of genetic alterations on central nervous system progression of primary vitreoretinal lymphoma

    Get PDF
    Primary vitreoretinal lymphoma (PVRL) is a rare malignant lymphoma subtype with an unfavorable prognosis due to frequent central nervous system (CNS) progression. Thus, identifying factors associated with CNS progression is essential for improving the prognosis of PVRL patients. Accordingly, we conducted a comprehensive genetic analysis using archived vitreous humor samples of 36 PVRL patients diagnosed and treated at our institution and retrospectively examined the relationship between genetic alterations and CNS progression. Whole-exome sequencing (n = 2) and amplicon sequencing using a custom panel of 107 lymphomagenesis-related genes (n = 34) were performed to assess mutations and copy number alterations. The median number of pathogenic genetic alterations per case was 12 (range: 0– 22). Pathogenic genetic alterations of CDKN2A, MYD88, CDKN2B, PRDM1, PIM1, ETV6, CD79B, and IGLL5, as well as aberrant somatic hypermutations, were frequently detected. The frequency of ETV6 loss and PRDM1 alteration (mutation and loss) was 23% and 49%, respectively. Multivariate analysis revealed ETV6 loss (hazard ratio [HR]: 3.26, 95% confidence interval [CI]: 1.08–9.85) and PRDM1 alteration (HR: 2.52, 95% CI: 1.03–6.16) as candidate risk factors associated with CNS progression of PVRL. Moreover, these two genetic factors defined slow-, intermediate-, and rapid-progression groups (0, 1, and 2 factors, respectively), and the median period to CNS progression differed significantly among them (52 vs. 33 vs. 20 months, respectively). Our findings suggest that genetic factors predict the CNS progression of PVRL effectively, and the genetics-based CNS progression model might lead to stratification of treatment
    corecore