188 research outputs found

    On the Possibility of Continuous, Paretian and Egalitarian Evaluation of Infinite Utility Streams

    Get PDF
    There exists a utilitarian tradition à la Sidgwick of treating equal generations equally in the form of anonymity. Diamond showed that no social evaluation ordering over infinite utility streams satisfying the Pareto principle, Sidgwick's equity principle, and the axiom of continuity exists. We introduce two versions of egalitarianism in the spirit of the Pigou-Dalton transfer principle and the Lorenz domination principle, and examine their compatibility with the weak Pareto principle in the presence of a semi-continuity axiom. The social evaluation relation is not assumed to be either complete or transitive, yet Diamond's impossibility strenuously resurfaces.

    Scalable Methods to Collect and Visualize Sidewalk Accessibility Data for People with Mobility Impairments

    Get PDF
    Poorly maintained sidewalks pose considerable accessibility challenges for people with mobility impairments. Despite comprehensive civil rights legislation of Americans with Disabilities Act, many city streets and sidewalks in the U.S. remain inaccessible. The problem is not just that sidewalk accessibility fundamentally affects where and how people travel in cities, but also that there are few, if any, mechanisms to determine accessible areas of a city a priori. To address this problem, my Ph.D. dissertation introduces and evaluates new scalable methods for collecting data about street-level accessibility using a combination of crowdsourcing, automated methods, and Google Street View (GSV). My dissertation has four research threads. First, we conduct a formative interview study to establish a better understanding of how people with mobility impairments currently assess accessibility in the built environment and the role of emerging location-based technologies therein. The study uncovers the existing methods for assessing accessibility of physical environment and identify useful features of future assistive technologies. Second, we develop and evaluate scalable crowdsourced accessibility data collection methods. We show that paid crowd workers recruited from an online labor marketplace can find and label accessibility attributes in GSV with accuracy of 81%. This accuracy improves to 93% with quality control mechanisms such as majority vote. Third, we design a system that combines crowdsourcing and automated methods to increase data collection efficiency. Our work shows that by combining crowdsourcing and automated methods, we can increase data collection efficiency by 13% without sacrificing accuracy. Fourth, we develop and deploy a web tool that lets volunteers to help us collect the street-level accessibility data from Washington, D.C. As of writing this dissertation, we have collected the accessibility data from 20% of the streets in D.C. We conduct a preliminary evaluation on how the said web tool is used. Finally, we implement proof-of-concept accessibility-aware applications with accessibility data collected with the help of volunteers. My dissertation contributes to the accessibility, computer science, and HCI communities by: (i) extending the knowledge of how people with mobility impairments interact with technology to navigate in cities; (ii) introducing the first work that demonstrates that GSV is a viable source for learning about the accessibility of the physical world; (iii) introducing the first method that combines crowdsourcing and automated methods to remotely collect accessibility information; (iv) deploying interactive web tools that allow volunteers to help populate the largest dataset about street-level accessibility of the world; and (v) demonstrating accessibility-aware applications that empower people with mobility impairments

    ViScene: A collaborative authoring tool for scene descriptions in videos

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier; National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    Introducing people with ASD to crowd work

    Get PDF

    Combining crowdsourcing and Google street view to identify street-level accessibility problems

    Get PDF
    ABSTRACT Poorly maintained sidewalks, missing curb ramps, and other obstacles pose considerable accessibility challenges; however, there are currently few, if any, mechanisms to determine accessible areas of a city a priori. In this paper, we investigate the feasibility of using untrained crowd workers from Amazon Mechanical Turk (turkers) to find, label, and assess sidewalk accessibility problems in Google Street View imagery. We report on two studies: Study 1 examines the feasibility of this labeling task with six dedicated labelers including three wheelchair users; Study 2 investigates the comparative performance of turkers. In all, we collected 13,379 labels and 19,189 verification labels from a total of 402 turkers. We show that turkers are capable of determining the presence of an accessibility problem with 81% accuracy. With simple quality control methods, this number increases to 93%. Our work demonstrates a promising new, highly scalable method for acquiring knowledge about sidewalk accessibility
    corecore