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Commanding and Re-Dictation: Developing Eyes-Free
Voice-Based Interaction for Editing Dictated Text
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Existing voice-based interfaces have limited support for text editing, especiallywhen seeing the text is difficult,

e.g., while walking or cooking. This research develops voice interaction techniques for eyes-free text editing.

First, with a Wizard-of-Oz study, we identified two primary user strategies: using commands, e.g., “replace

go with goes” and re-dictating over an erroneous portion, e.g., correcting “he go there” by saying “he goes

there.” To support these user strategies with an actual system implementation, we developed two eyes-free

voice interaction techniques, Commanding and Re-dictation, and evaluated them with a controlled experi-

ment. Results showed that while Re-dictation performs significantly better for more semantically complex

edits, Commanding is more suitable for making one-word edits, especially deletions. We developed VoiceRev

to combine both the techniques in the same interface and evaluated it with realistic tasks. Results showed

improved usability of the combined techniques over either of the two techniques used individually.
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1 INTRODUCTION

In Human–Computer Interaction (HCI), text editing typically involves visual engagement: Al-
though text input can be performed using various techniques, e.g., physical keyboard, touch-based
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interactions, or by using voice-input, the feedback (output) and outcome evaluation [21] are done
through on-screen displays and, hence, require visual engagement.
Voice-only interfaces, such as Amazon’s Echo, Google Home, and Xiaomi’s XiaoAI are now

becoming mainstream [1]. These interfaces allow users to perform tasks with computing devices
eyes-free and hands-free, which is especially useful when the user is engaged in other tasks, on the
go or in the home environment. The emergence of such interfaces paints a desirable future scenario
of flexible interaction with computers: the ability to interact with computing devices without the
need to hold or be in contact with the device, so that the whole body is free to engage in other
tasks.
However, the capabilities of such interfaces are still fairly limited—while consumer-grade voice

assistants like Google Assistant and Alexa already enable people to perform simple tasks (e.g.,
check the weather, search directions, and set a reminder), their efficacy to support users to per-
form more complex tasks such as editing text is underexplored, especially when visual feedback is
precluded. Although services like Alexa’sMail Box “skill” allow users to compose e-mails or short
text messages via speech in an eyes-free manner, user reviews suggest that the interactions are
severely limiting and pose major usability challenges [2].
A major challenge for speech-based interaction with text is the difficulty in editing the dic-

tated text [3]. While the increasingly mature speech-to-text technology can automatically tran-
scribe user utterances, the dictated text often needs to be corrected because of errors like speech-
recognition errors and incoherence of the author’s thoughts during dictation. The challenge of
speech-based text editing is exacerbated in eyes-free situations. Existing tools like Mail Box can
read out the text that the user wrote via speech, allowing them to “proofread” the composed text
without seeing it. However, the linear [16, 27, 33] and temporal [16, 37] nature of audio makes the
audio-based proofreading prohibitively slow and error-prone. Ghosh et al. [11] showed that with-
out visual feedback users failed to complete editing tasks most of the time, and even when they
could, the accuracy levels were low. Yet, as evident in both user research [11] and in consumer-
grade products likeMail Box, it is desirable to allow users to conveniently compose and edit short
e-mails, messages, or social media posts in an eyes-free fashion, using voice input, especially when
they are on the go or being occupied by other tasks such as cooking.
Previous work [11] has established the feasibility and desirability of eyes-free text editing. How-

ever, the interactions were designed as per the designer’s choice and, thus, may not support the
users’ most preferred speaking strategies. Although such interactions are suitable for early proto-
types, they are not useful in determining what interactions users would naturally choose to edit
text eyes-free without regard for recognition or technical errors. We began by exploring natural
verbal interactions users do when speaking to a system for composing and editing text eyes-free.
To avoid the influence of current technical limitations, we conducted a formative Wizard-of-Oz
study with 10 participants. One experimenter acted as a computer to simulate a smart agent (wiz-
ard) that would help the users to compose and subsequently edit the composed text. We observed
that the participants commonly used two editing strategies throughout the study: (1) editing by
using commands that did not adhere to any strict syntax, e.g., “please change this to that”; and
(2) editing by re-speaking over the erroneous part of the text with the correct phrasing, e.g., editing
“he go there” by simply speaking “he goes there.”
Techniques that support these two identified strategies have been explored in previous research

[19, 32, 34, 35], but not in the eyes-free context. Unlike text editing with visual feedback, where
the user can see the erroneous text prior to correcting it, eyes-free text editing needs user to
precisely remember the dictated text (from an audio feedback of the text), in order to both identify
and correct an erroneous portion. In that, eyes-free text editing needs to support interactions to
minimize the user’s cognitive load of recall, support barge-in correction utterances, and provide
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real-time response for outcome evaluation [11]. Hence, additional investigation is necessary to
re-study the existing techniques so that they support the identified strategies in the eyes-free
context. Also, there is a lack of understanding on how the two strategies compare with each other
in influencing the users’ text-editing performance. Therefore, in this work, we investigate the
following questions. (1) How can we adapt the existing techniques to the context of eyes-free?
(2) How does each technique affect the user performance of editing text? (3) Given that existing
text editing interfaces do not support both techniques together, is it necessary and sufficient to
support either technique individually for eyes-free use?
First, we designed a voice-based interface and implemented two eyes-free techniques, Com-

manding and Re-dictation, to support the two main identified user strategies of editing from the
Wizard-of-Oz study. To investigate the usability of these two techniques, we evaluated their effi-
ciency and ease of use with a controlled experiment with 16 participants. The tasks for this exper-
iment tested the performance of each technique in editing text of different complexities defined
through carefully chosen parameters. Results showed that each technique had its own advantage
in eyes-free text editing: For making simple one-word edits (e.g., insert/delete a single word), Com-
manding was either faster (deletion) or performed similarly to Re-dictation (insertion), whereas for
making longer and more complex corrections, Re-dictation was both the faster and the preferred
technique. Also, the results suggested that combining both the techniques in a coherent interface
might improve the usability of eyes-free text-editing systems as it would allow users a preferred
choice of technique based on the edit length and complexity of the intended correction.
We implemented a unified system, VoiceRev, to support both the techniques together and evalu-

ated it with a realistic study involving eight participants. Results confirmed that our findings from
the controlled study also hold with realistic tasks. Across 266 successful revision trials, 62% were
correction by Re-dictation and almost 29% were command-based deletions. Also, participants used
Re-dictation to correct longer regions of incorrect text, whereas the average number of words cor-
rected with Commanding was in the range of one to three. Finally, we discuss the implications of
our findings for the design of future voice-based systems.
Our contributions include (1) an understanding of naturally emerging user behavior for eyes-

free text editing using speech; (2) design and implementation of a voice interface, VoiceRev, that
supports two text-editing techniques:Commanding and Re-dictation together and can be used eyes-
free; (3) a controlled experiment providing an in-depth understanding of the two techniques; and
(4) a study with realistic tasks to evaluate the VoiceRev system and confirm our findings from the
controlled study.

2 RELATEDWORK

There are three broad areas our work relates to: use of voice input as an eyes-free input modality,
use of multimodality in text editing, and one-step text editing with voice input.

2.1 Voice for Eyes-Free Input

Voice as a form of eyes-free output (e.g., [9, 25, 30, 31, 39]) has been extensively studied. In contrast,
not many studies in the HCI literature have explored voice as a form of eyes-free input. JustSpeak
[40] explored eyes-free voice input as a means to facilitate device-wide voice control of an Android
device. This work was targeted towards blind and motion-impaired users. Azenkot et al. studied
voice as an input modality for nonvisual text entry in mobile devices [3]. Findings of this work
revealed that though speech input was an efficient alternative to using on-screen keyboards for
text entry, users found it difficult to correct misrecognized text from the speech recognizer’s output
and had to fall back on using the on-screen keyboard for the correction.
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Voice-based text correction has been explored in voice dialing systems [10]. These systems al-
lowed the user to speak lengthy telephone numbers (say, 10–12 digits) in chunks of multidigit
strings of variable length. The user would pause after every chunk and wait for the system to read
back the recognized digits, thereby verifying if the recognition was correct. If incorrect, the user
could issue commands such as “CLEAR” to discard the dictated chunk and say it again. However,
such voice dialing systems were limited in their text (digit) entry speed and did not allow users to
navigate through the text. Similar to voice dialing systems, voice dictation has been explored in au-
tomotive (in-car) dictation editors [7]. Like with voice dialing, users voice dictate the text by speak-
ing one short segment at a time and wait for the system to play back an audio of the recognized
segment for verification. Additionally, users can navigate through the segments using a steering
wheel interface and choose to delete and re-speak segments containing errors in them. However,
these systems are targeted towards a specific use case, i.e., entering and editing text while driv-
ing, and, like voice dialing systems, are limited in their text entry speeds and editing capabilities.
Hence, both voice dialing and in-car dictation systems are impractical for entering/editing longer
texts. Furthermore, these systems restrict the users’ “customary, natural” speaking behavior [6].
Eyes-free use of voice input has recently been explored in the context of text editing by Ghosh

et al.’s EDITalk [11]. This research showed the challenges of using existing voice-based dictation
software like Dragon Naturally Speaking for end-to-end eyes-free operation. As a solution, the
authors proposed EDITalk, an eyes-free command-based text-editing system that can be operated
with voice-only input and output. However, this system explored eyes-free voice-based text editing
with command-only interaction, which might not be reflective of the users’ preferred mode of
interaction. Also, command-based editing might not be optimal in the eyes-free context as using
commands requires the user to memorize the exact command syntax and speak it out precisely.
This recall of information might add on to the heavy cognitive load of eyes-free listening and
editing [11].

2.2 Multimodal Text Editing

Although not within the eyes-free context, there exists a body of literature exploring the visual
use of commanding and re-dictation for voice-based text editing. Halverson et al. [13] had studied
user patterns of voice-based error correction in desktop speech systems, and found out that using
a single modality of input (re-dictation) might lead to spiral depths [24] and cascades [13], which
slows down the error-correction process. They suggested that switching modalities of input from
voice-only re-dictation to voice+mouse or voice+keyboard is helpful to cut down on the error-
correction time. Since then, several other works have explored multimodality in the context of
error correction. Suhm et al. [32] had explored the use of speech along with mouse, keyboard, and
stylus and found that using multimodal input increases the error-correction speed.
Furthermore, Oviatt [23] had previously suggested that combining speech input with additional

input modalities might improve the speech-recognition accuracy. Later, researchers showed that
the accuracy of text entry can be improved by combining speech input with input from a gestural
keyboard, both asynchronously [15] and synchronously [28].
Different from this body of work, we focus on eyes-free voice-based editing without the help

from keyboard, mouse, or visual display. However, we draw inspiration from the previous research,
which suggests that instead of sticking to one particular strategy, a combination of multiple strate-
gies can lead to an improvement in the performance and usability of error correction.

2.3 One-Step Voice-Based Text Editing

The re-dictation technique has been explored in the visual-text-editing context, under two
approaches: two step versus one step. The two-step re-dictation approach was presented in an
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earlier work [13], where the erroneous text is first selected with a select instruction (target-based
navigation) and then the correction is dictated to replace the selected text (correction). As the
requirement of selecting the text first is an additional step that requires users’ time and effort,
McNair and Weibel proposed to simplify the two-step approach into a one-step approach [19].
The one-step approach allowed users to correct erroneous text by re-speaking over the erroneous
part using the correct wordings, e.g., correcting “he go there” by saying “he goes there.”
To achieve a one-step correction, the text-editing system needs to understand which part of

the text the user intends to replace; this can be a challenging task. Several previous studies have
attempted to solve this problem. In these works, although a diverse terminology has been used
to describe the correction technique: “fluid” text correction [36], “seamless error correction” [5],
and correction through “re-speaking” [29, 34], the terms essentially embody the same one-step
approach.
One-step correction involves first identifying the error region and then correcting it. One at-

tempt at identifying the error region has been using automatic alignment models [34]. Choi et al.
[5] suggested a model for both identification and subsequent automatic correction. Vertanen and
Kristensson [35] further proposed a merge model to improve the recognition accuracy of the cor-
rection utterance.
While the previous works on re-dictation under the visual-text-editing context were relevant

and extremely valuable, our work differs from them in two aspects. (1) Instead of applying re-
dictation with a visual display, we focus on its use in eyes-free scenarios. As pointed out in the
Introduction, unlike voice input with visual feedback, eyes-free voice interaction (voice as both
the input and output modalities) needs to support barge-in interactions, minimize users’ cognitive
load of recall, and provide real-time audio feedback of the interaction outcome. (2) Instead of focus-
ing on improving the performance of re-dictation, we aim at understanding when and how such
techniques should be used for eyes-free text editing with voice, and how correction by re-dictation
can complement the use of commands to achieve a better user experience.

3 STUDY 1: WIZARD-OF-OZ STUDY

We started our investigationwith aWizard-of-Oz study in order to understand how users naturally
perform eyes-free dictation and editing tasks when not constrained by current technical limita-
tions. An experimenter simulated a system that allowed users to speak freely for composing and
revising text. Participants were not aware of the system being operated by a human experimenter.

3.1 Study Design

3.1.1 Participants. We recruited 10 participants (5 female, 5 male; mean age = 25.2 years,
SD = 4.05), of whom 4 had never used a dictation application before, while the other 6 used one
occasionally. As an exploratory study, we intentionally recruited people with different levels of ex-
posure to voice-based interfaces to observe if there are any differences in how they interact with
the devices.

3.1.2 Apparatus. Participants performed the task eyes-free, seated by speaking into a Blue Yeti
condensermicrophone, while the systemwas run by an experimenter seated behind a large piece of
cardboard that separated the experimenter from the participant. The experimenter operated an in-
house designed web-based tool running on a 13" MacBook Pro (2017 edition) laptop. The web tool
was developed using JavaScript and combined a Text-to-Speech (TTS) reader for audio playback
with Google’s Speech-to-Text Application Programming Interface (API) for speech transcription.
This tool transcribed the participants’ speech into text and allowed the experimenter to edit it and
play back an audio of the text to the participant. This procedure allowed us to bypass the technical
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Fig. 1. Categories of text-editing instructions used by participants in the Wizard-of-Oz setting.

limitations of existing techniques in dealing with speech repair and editing dictated text [19, 22],
and allowed the user to speak freely and naturally. In addition, the experimenter occasionally
played back a minimal system response, such as “I did not understand your instruction” or “I
could not find the words you mentioned,” as necessary to aid the interaction.

3.1.3 Task and Procedure. Participants started with a training task of composing a message to
a family member or a friend. After getting familiar with the system, the participants were asked to
perform four tasks. Each task required the participants to compose and revise a piece of text about
150 words in length. For two of the tasks, the topic was informal social media posts, while for the
other two the topic was formal professional e-mails. As part of the task-completion criteria, the
participants were asked to make sure that the content was ready to be published on a social media
platform or sent out to an actual person. The participants were instructed to speak freely and not be
limited by any prior experience with a voice user interface.While revising the content, at any point
during the task, participants could instruct the system to read back the text. By default, anytime
a participant made a correction utterance, the experimenter (Wizard) would manually modify the
text as instructed by the participant and play back the modified text from just before the modified
portion. After the tasks had finished, participants were interviewed for about 15 minutes to know
their subjective preferences and strategies of performing the text-modification operations. The
entire experiment lasted for approximately an hour.

3.1.4 Data Collection and AnalysisMethod. We recorded the audio of the speech interaction and
the screen of the experimenter. Also, all interviews were audio recorded. Amember of the research
team transcribed the recorded audio files for subsequent analysis. We used thematic analysis to
identify recurring themes in the data through open and axial coding.

3.2 Findings

As mentioned before, thematic analysis was performed on the transcripts of the speech interac-
tion. We analyzed how participants formed their instructions to the system. As Figure 1 shows, a
spectrum of instructing behavior emerged from the data, with the instructions ranging from being
very unspecific to very specific.

ACM Transactions on Computer-Human Interaction, Vol. 27, No. 4, Article 28. Publication date: August 2020.
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We coded six categories from the utterances used for delivering the edit instructions: think aloud,
questions, high-level commands, low-level commands, re-dictation, and re-dictation with commands.
Think aloud includes utterances that express a participant’s state of mind or thought process dur-
ing the interaction and often convey some intention, e.g., “I don’t remember what I was supposed
to say.” Questions are utterances where the participants had asked a question to the system, e.g.,
“Did I say ‘xxx’?” High-level commands are commands that are abstract and require additional pro-
cessing to become concrete editing operations, such as “There should be only one ‘whether’ in the
sentence.” (Here, the concrete edit operation implied was to delete one of the two “whether” that
were placed right next to each other in the text.) Unlike high-level commands, low-level commands
are specific command-based instructions to edit the text, e.g., “Delete the phrase ‘had been’.” For
the low-level commands, participants used keywords like delete or change to specify concrete
editing operations (intents). Utterances categorized as re-dictation are the ones in which partici-
pants re-dictated an erroneous portion of the text with the re-dictated utterance containing the
desired change(s). For example, “I will waiting for” was corrected by saying “will be waiting.”
Finally, the re-dictation with commands category includes utterances where participants com-

bined the use of keywords with re-dictation, e.g., “Can you please change to ‘had been’?” (Here,
the intended correction was to change from “have been” to “had been.”) The correction utterance
in the previous example requests a change operation without specifying which portion of the text
the change should apply to. Also, the use of the keyword is redundant as the change intent is evi-
dent even without the keyword. Hence, the utterance can in effect be interpreted as a re-dictation
utterance. On the other hand, some utterances in this category specify the same instruction us-
ing both a command and re-dictation simultaneously, e.g, “Change the ‘for’ to ‘to’ and make it
‘we went to the movie’.” (The intended correction was to change from “we went for the movie”
to “we went to the movie.”) In this example, the utterance can be decomposed into two complete
instructions—one using low-level commands and the other using re-dictation. Therefore, although
we coded a separate category for re-dictation with commands, in effect they can be expressed using
either low-level commands or re-dictation.
The first three categories—think aloud, questions, and high-level commands—were further com-

bined into a higher order category: unspecific instructions, owing to the vagueness in their expres-
sion. The process of inferring concrete edit operations from the unspecific instructions requires
deep contextual understanding and the ability to interpret abstract thinking. In contrast, the last
three categories—low-level commands, re-dictation, and re-dictation with commands—were fur-
ther combined into a higher order category: specific instructions, owing to the concreteness in their
expression.

3.2.1 Interaction Strategies for Editing. Figure 1 illustrates the occurrence of different instruc-
tion types and places them on a spectrum of specificity. Analysis of all the identified instruction
types and editing strategies revealed two concrete strategies that were used the most—use of re-
dictation and low-level, keyword-based commands. Additionally, participants switched between text
composition and revision in two different styles. Seven participants first composed the entire con-
tent and then revised it from the beginning, while three participants alternated multiple times
between composing and revising (i.e., composed a few sentences each time and then revised it
before moving on to compose the next set of sentences).
The findings of this study warrant a deeper investigation into the two major user strategies of

editing text eyes-free. While the other identified strategies are low in their number of occurrences,
they also lie beyond the scope of what can be achieved with the state-of-the-art in computing and
machine intelligence. Also, as observed in this study, there was a minimal overlap between the
composition and revision phases. The common user behavior was to start the revision phase only
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after the composition phase had ended. Therefore, we do not study the users’ switching behavior
between the two phases in the rest of this article. Hence, the scope of our subsequent explorations
is to study command-based and re-dictation-based instructions for editing text eyes-free in the
revision phase. In that, our aim is to understand the opportunities and challenges presented by
each strategy under different task constraints.

4 DEVELOPING AN EYES-FREE VOICE INTERFACE FOR TEXT EDITING

Based on our findings from Study 1, we developed a voice interface for eyes-free text editing
that supports two interaction techniques: Commanding and Re-dictation. Commanding supports
command-based editing without having to adhere to a strict syntax, e.g., “change this to that,”
while Re-dictation supports correction by re-speaking over the erroneous portions of the text with
the correct phrasing, e.g., in the phrase “a hundred splendid sons,” the “hundred” can be changed
to “thousand” by saying “thousand splendid sons,” “a thousand,” or any other similar phrase that
repeats over an existing part of the text and contains the desired change. The system would then
automatically compute the portion of the original text that needs to be modified to achieve the
desired correction, based on the similarity between the re-spoken text and the original text.
Existing techniques that support the two strategies—command-based correction and correction

by re-dictation—rely on visual feedback for the editing process. The aim of our implementation
was to adapt these existing techniques for eyes-free use. For the rest of this article, we call the
eyes-free adaptation of the two techniques as Commanding and Re-dictation, respectively.
This section describes the implementation of both the Commanding and the Re-dictation tech-

niques. First, we discuss the components that are common to both the techniques followed by the
specific implementation details of each technique individually. Note that, for all examples in this
section, we use the famous English pangram: “The quick brown fox jumps over the lazy dog.” In
our examples, any deviation from the pangram’s original form, e.g., “jumped over” or “The quick
fox...” would denote an error in the sentence with the error italicized and would be corrected back
into its original form.

4.1 Common System Architecture

Figure 2 shows the system architecture that serves as the base framework on which specific imple-
mentations for the Commanding and Re-dictation techniques were developed. The system consists
of a speech-to-text (speech-recognition) engine for transcribing user-dictated text and voice-based
text-editing instructions (correction utterances), a text-to-speech (TTS) engine for audio playback
of the transcribed text, a language parser for parsing the users’ correction utterances, an instruc-
tion processing subsystem to compute the text update parameters and perform the required system
actions based on the user instructions, and a text editor to preserve the dictated text for poste-
diting. For speech recognition, we used Google’s state-of-the-art Cloud Speech-to-Text API.1 For
TTS, talkify.js, which is a JavaScript-based TTS library, was used. Another JavaScript-based library,
quill.js, was used to implement the text editor. Quill.js allows modification of the text programmat-
ically with a JavaScript API. The rest of the components were designed in-house.
The system allows the user to voice dictate a piece of text, which gets transcribed and recorded

in the text editor. Google’s speech-to-text library automatically removes filler words such as um,
uh, er, and so on, thereby precluding the need for additional preprocessing of the user utterance
for the removal of filler words. When the user opts to revise the text, the TTS engine provides an
audio playback of the transcribed text to the user. By default, the talkify library reads out punctu-
ation marks in the text by appropriate pauses and inflections in the TTS voice. During the audio

1https://cloud.google.com/speech-to-text.
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Fig. 2. Common system architecture—components and input/output. Numbers 1–9 show the order of events

and the information flow between the system components in the eyes-free text-revision process. (1) User lis-

tens to an audio of the dictated text. (2) User makes a correction utterance. (3) The utterance is transcribed

to text. (4) System controller signals TTS to stop reading the text. (5) The transcribed utterance is forwarded

to the language parser for parsing. (6) The parsed utterance and the text stored in the text editor (not shown)

serves as input to the instruction processing subsystem; (7) The instruction processing subsystem after ex-

tracting the correction intent from the utterance and computing the text update parameters sends the intent

and the update parameters to the Text Editor module. (8) The text editor module updates the text in the text

editor and sends the control back to the system controller. (9) The system controller signals the TTS to resume

reading; the TTS picks up the updated text from the text editor and resumes reading (not shown).

Table 1. List of Supported Intents

Intent Parameters
Insert content, location
Delete content, location (optional)
Change old_content, new_content, location (optional)
Read location (optional), read_mode (optional)
Repeat location (optional), repeat_mode (optional)
Undo/Redo nonparameterized
Stop/Resume nonparameterized
Get_Location nonparameterized

playback, a user can edit the text by speaking a voice instruction. As the user starts speaking, the
TTS stops the playback and the text modification (as instructed by the user) happens in real-time.
Finally, the TTS resumes reading from just before2 the modified portion of the text and continues
reading until the user interrupts again or the whole text has been read.
The system supports two sets of operations: one set for common administrative operations and

the other set for core text-modification operations [26]. The common administrative operations
include repeat, undo, redo, stop, resume, and get_location (see Table 1). This set of operations is
supported by both the text-modification techniques. The repeat operation repeats the last sentence

2The resumption happens 25 character positions before (which is about 5 words before) the position of modification.

This additional context information helps to maintain a continuity in the interaction despite the interruption. Computing

25 character positions before the position of modification might result in a position that is in the previous sentence or in

the middle of a word. The former scenario is resolved by resuming the reading from the start of the modified sentence,

while the latter is resolved by resuming the reading from the start of the bounding word.
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Fig. 3. A correction utterance labeled in Dialogflow.

read by the TTS, the undo and redo operations undo or redo the last operation, the stop operation
stops the TTS, and the resume operation resumes the TTS. The get_location operation allows the
user to inquire the sentence number of the current sentence being read by the TTS. The core text-
modification operations are responsible for modifying the text and are handled differently by the
two techniques.

4.2 Commanding Technique

Our results from Study 1 showed that users often use different keywords for commands with the
same intent. Also, we noticed that when speaking out the command, users do not follow a strict
syntax. To accommodate such behaviors, we introduced two important design considerations into
the design and implementation of our command-based modification technique.
First, consistent with the user behavior, the system should accommodate words/phrases that

are synonymous with (1) keywords for specifying the intent, and (2) words that represent deictic
references, e.g., ‘this’, ‘after’, and so on. We designed our system to recognize several keywords
for each intent. For example, all the following keyword-preposition pairs: change to, switch to,
replace by,replacewith, andtransform to, represent theChange intent. The keywordswere
informed by user utterances from Study 1. We used Google’s Dialogflow3 to label the keywords
and categorize them based on intent. Also, our system supports synonyms in identifying deictic
references. For example, in a sentence with two occurrences of the word “fox,” the instruction
“delete fox” after the second “fox” has been read out (by the TTS) would yield the same result
as saying “scratch the second fox out” at any point during the sentence playback.
The previous example also clarifies that the conflict between repeated occurrences of the target

word is resolved in favor of the most recently read one. We based this design decision on our
assumption that since speech is linear and temporal in nature, users aremore likely to have referred
to a piece of information that is more recent than a previous occurrence of the same information.
Second, the system should accommodate commonly occurring “conversational-style” elements

in the user utterance and parse them out as noise. For example, if the user commands an insert
operation with an utterance such as: “Could you please insert the phrase jumped over after quick
brown fox in this sentence?” then the system should parse out the verbiage and interpret the intent
as “Insert jumped over after quick brown fox.” Luger and Sellen [18] had noted the presence of
these “conversational-style” elements in users’ conversations with their conversational agents.
We used Dialogflow to train a hybrid classifier [combining both rule-based knowledge and ma-

chine learning (ML) with theML classification threshold set to 0.3] to separate the user’s correction
utterance into distinct functional parts (see Figure 3): synonymous keywords and phrases for the
various intents, deictic references, granularity of the modification, specific location (relative or ab-
solute) versus range ofmodification, and conversational-styled elements. For training the classifier,
we used 1,005 manually annotated training examples across all the 10 intents currently supported
by our system (see Table 1). Once, Dialogflow labels the different functional categories, a grammar
checker validates the well-formedness of the utterance based on their functional role within the
utterance. If valid, the correction utterance triggers a relevant correction operation on the text.

3https://dialogflow.com/.
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The command-based technique requires users to specify the intent and any accompanying pa-
rameter(s) as necessary. As an example of how the command-based techniqueworkswith the Insert
intent, let us consider a sample insertion command: “Insert fox after brown.” Here, “Insert” is
a keyword for the Insert intent, “fox” is a parameter to specify the content to be inserted into the
text, and the phrase “after brown” is a parameter that specifies the location context. In this exam-
ple, a relative location context is specified by the spatial deixis, “after,” and a targetword, “brown.”
However, the user may chose to specify the location context in a more complex manner, e.g., the
user says: “at the end of the sentence having the word brown in it, insert lazy dog.” Dialogflow’s
hybrid classifier extracts the underlined section of the command as the location parameter and
labels the various parts: “end of the sentence” as the absolute target location, “having the word” as
the container phrase, “brown” as the target word, “insert” as the keyword, and “lazy dog” as the
content parameter to be inserted. Once labeled and the grammar checker finds the command valid,
the cursor is placed at the end of the specified sentence for the content parameter, “lazy dog,” to
get inserted as the last two words of the modified sentence.
To give the user a fine-grained control for specifying the location context (for all applicable

intents), our system allows the user to (1) specify the granularity of the text to be edited: word
or sentence; (2) match the target text inside a specific sentence, e.g., “in the sentence having the
words brown fox in it...”; (3) use spatial deixes: start, end, before, and after to specify locations
within (start/end) or outside (before/after) of a sentence; (4) use contextual references: previ-
ous, this, and next to locate a sentence in a given context, e.g., “delete the next sentence”; and
(5) use ordinal numbers to locate a sentence, e.g., “repeat the first sentence.” The user can com-
bine multiple location specification constructs to form a complex location query, e.g., “at the be-
ginning of the sentence having the words jumps over in it, insert the words A quick.” In that,
our tool supports a much broader vocabulary as compared to the current vocabulary of eyes-free
voice commands [11].

4.3 Re-Dictation Technique

In Study 1, we observed that participants often correct sentences by re-speaking over unwanted
parts of the text with the correct wordings. For example, to correct “the quick drown fox jumps...,”
a participant says “quick brown fox,” where “brown” should replace “drown.” The underlined words
on either side of the correction have an exact match in the text and are called the context words
with respect to the correction. To make a correction, participants may say context words either to
the left of the correction, or to the right, or on both sides (as in the previous example). Although this
approach of text correction has been explored in the visual context [34], we focus on an eyes-free
adaptation of this technique, which we call Re-dictation.
The key challenge in implementing Re-dictation is aligning the correction with the part of the

text that needs to be corrected (target text). Here, it should be noted that the aim of our implemen-
tation is not to find a precise re-dictation algorithm that beats the state-of-the-art but to adapt the
re-dictation-based correction technique to the context of eyes-free. In that, our aim is to achieve a
fairly usable alignment accuracy along with real-time error correction (minimal latency between
the user’s correction instruction and its execution) and support for interacting with the text eyes-
free.
We combine two strategies for the text alignment: (1) limit the search space in which to locate

the target text, and (2) use language analysis to determine the target text by computing similarity
between the user utterance and the sentences within the search space (candidate sentences).

4.3.1 Limit the Search Space. An important heuristic to locate the target text in the eyes-free
scenario is timing: From our pilot studies, we noticed that nearly 98% of the time, a correction was
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Fig. 4. Flowchart for the Re-dictation technique design.

spoken within an average of 1.4 seconds of the target text being read out, a phenomenon referred
to as “barge-in” in the literature [11]. The reason behind this barge-in phenomenon is straightfor-
ward: Due to the limited capacity of our short-term memory, if we do not immediately speak out
the correction, we tend to forget the exact phrasing of the erroneous text. The timing heuristic al-
lows us to limit the search space of the target text to the sentence that the user interrupts to speak
a correction. Additionally, if a sentence is interrupted within the first four words (experimentally
determined), the sentence preceding the interrupted sentence is also added to the search space;
this is to accommodate the average time taken by a user to react to a correction cue towards the
end of the preceding sentence. By limiting the search space, finding the target text within the body
of the transcribed text becomes much easier and faster.

4.3.2 Determine the Target Text Using Language Analysis. Once the search space is truncated,
the next step is to align the correction utterance to a part of the text within the search space.
Figure 4 shows a high-level diagram of the system design. If the user provides context words both
to the left and to the right of the intended correction, the alignment is trivial: The respective left
and right contexts in the text and the utterance are aligned and the part between the contexts in the
text is replaced by the part between the contexts in the utterance. As an example, to correct “The
slick round box jumps over the lazy dog” if the user says, “The quick brown fox jumps,” then the
text and the utterance aligns at “The” (left context) and “jumps” (right context), and the portion of
the text between the two contexts, i.e., “slick round box” is replaced by the portion of the utterance
between the two contexts, i.e., “quick brown fox.”
However, in other cases, the user may provide only the left or the right context, or may not

provide any context at all. Thismakes determination of the part of the text that needs to be replaced
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(target text) nontrivial. In such cases, first, the text and the utterance are aligned at the matching
context (if any), then using an in-house designed similarity matching algorithm, similar portions
are identified and subsequently aligned. We use similarity as an alignment heuristic as the user-
dictated correction is based on the initial user-dictated text and, hence, often share similar elements
between them [8, 41]. For example, during the initial dictation (composition) phase, the user says
“fox leaped over” and later wants to correct the verb “leaped.” Here, the assumption is that the
user would either correct to a different form of the verb with the same root such as “leaps” or “had
leaped” (grammatically similar) or a different verb conveying an action with similar meaning such
as “jumped” (semantically similar), or, in the case of speech-recognition error in the initial dictation,
to something that is phonetically similar like “tripped” or “skipped.” In our implementation, we
check only for the first two similarities, i.e., grammatical and semantic similarities.
The similarity matching algorithm works in three hierarchical passes starting with stem

matching followed by lemma matching and, finally, semantic matching. From stem matching to
semantic matching, the criteria for computing a match are increasingly relaxed. Once a match is
found in a pass, the matching algorithm terminates; otherwise, it continues with the remaining
passes. Similarity matching starts with the language parser breaking both the candidate sentences
and the user utterance into a series of tokens4 using the Google Cloud Natural Language API.5

This process is called tokenization. Once the tokens are extracted, the candidate sentence tokens
are matched against the utterance tokens in the three passes mentioned before.
In the first pass, tokens match if they share the same stem. For example, “manage,” “manage-

ment,” “managing,” and “manager” share the same stem, “manag.” If there are no matched tokens
in the first pass, in the second pass, lemmas are matched. It is worthwhile to note that the lemma
extraction or lemmatization is computationally more intensive than stem extraction or stemming.
Stemming usually involves cutting off commonly occurring prefixes, suffixes, or derivational af-
fixes from an inflected word without taking into account the context of the word usage. Therefore,
stemming can neither differentiate between words that have different meanings depending on the
part of speech nor can it identify words with different stems but conveying the same meaning.
For example, although “go” and “went” convey the same idea in different tenses, stemming fails to
capture this as the two words do not share a common stem. In contrast, lemmatization involves a
thorough morphological analysis to understand the context of use of a word and, hence, can find
the morphological root of the word. Referring back to the previous example, both “go” and “went”
share the same lemma, “go.” Other examples of words with different stems but having the same
lemma are “is,” “was,” and “am” (lemma: “be”), “has” and “have” (lemma: “have”), and so on. Hence,
lemma matching is more relaxed and can match words that were unmatched after stem matching
if they share the same canonical/morphological root.
If the first two passes, i.e., stem and lemma matching, fail to find a match between the utterance

and the text tokens, the third pass gets executed. In the third pass, the matching criterion is relaxed
to finding semantic similarity between the two sets of tokens. Two tokens belong to the same
semantic category if they share a common WordNet domain [20]. For example, “cat” and “dog”
belong to the same WordNet domain: “noun.animal.” Once a pass results in one or more pairs
of matches, the matching stops and the longest common subsequence (LCS) of matched pairs is
computed. The LCS determines both the target text and the part of the utterance that will replace
the target text.
However, if utterance tokens remain unmatched even after all three passes of the similarity-

matching algorithm, the unmatched utterance tokens are aligned to the text using a language

4A token is a string of contiguous characters between two spaces, or between a space and a punctuation.
5https://cloud.google.com/natural-language.
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model derived from the Google Books Ngram Dataset (version 2).6 This alignment is done using
a simple linear interpolation [38] of bigrams and trigrams formed at all potential positions for
the alignment and choosing the most probable position as the position of alignment (best align-
ment). However, to minimize potential recognition errors in the correction utterance from getting
aligned, the alignment is rejected if the probability of best alignment is below an experimentally
determined (by trial and error) cut-off = 0.1 (not shown in Figure 4 for simplification). For a re-
jected alignment, no error message is issued since a part of the utterance might already have been
aligned in a previous step (if the utterance had either the left or the right context present, see
Figure 4). Instead, the TTS resumes reading the text from either (1) just before the modified por-
tion, as discussed before, if the correction utterance results in a modification of the text; or (2) just
before the portion that was being read prior to the user interrupt, if the correction utterance does
not result in a modification. In both cases, the user can unambiguously determine whether their
intended modification has been performed.

5 STUDY 2: CONTROLLED EXPERIMENT—RE-DICTATION VERSUS COMMANDING

Our goal was to gain a deeper understanding of the pros and cons of the Re-dictation and Com-
manding techniques in editing text. To achieve this, we conducted a controlled experiment that
compared these two techniques under a number of editing conditions. For the experiment, partic-
ipants were asked to perform text-editing tasks eyes-free with each technique, following triggers
of modifications embedded in the text. We designed tasks with varied complexities based on the
number of edits per sentence and the relative positions between multiple edits. The experiment
was to test our hypotheses and help us understand what parameters in text editing affect the use
of each technique. Our hypotheses were as follows:

—H1: Re-dictation is more efficient to use than Commanding for making more complex edits.
—H2: Re-dictation is easier to use than Commanding for making more complex edits.
—H3: Commanding is more efficient than Re-dictation for making simpler edits.

5.1 Participants

A total of 16 paid participants (6 female, 10 male) were recruited for the experiment. The average
age of the participants was 24 years (SD = 4.38). Ten participants were native English speakers.
All the 16 participants were recruited from a local university and none of them had participated
in Study 1.

5.2 Apparatus

The experiment was conducted in a quiet office. The participants used in-house-designed experi-
ment software implemented with Node.js and JavaScript. The software was run on a locally hosted
server on a MacBook Pro (2017 edition) with an Intel Core i5 dual-core processor running at
3.1 GHz using 16 GB of 2133 MHz LPDDR3 RAM and running macOS High Sierra (v10.13.6). Par-
ticipants were provided with a Blue Yeti condenser microphone for voice input and a pair of Bose
QC35 headphones for listening to the system audio. The experimenter had access to the same
audio as the participant through a pair of Sennheiser CX180 earphones. The participant and the
experimenter were seated face-to-face at the opposite long ends of a standard office desk, with the
experimenter facing the laptop screen and the participant facing the microphone (Figure 5). The
experimenter monitored the program running on the laptop, intervening only to use the next but-
ton to move through the different trials and start/stop a timer to measure the task-completion time.

6https://phrasefinder.io/documentation.
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Fig. 5. Experimental setup for the controlled study. Participant had no visual engagement with the text.

There was no verbal communication between the participant and the experimenter throughout the
duration of the experiment, except for the instructions and a final interview component. However,
unlike Study 1, which was Wizard-of-Oz, restricting the participants from being able to see the
experimenter was not necessary as the participants used a fully automated system. Moreover, a
training session was conducted with the participants, prior to performing the actual experimental
tasks, to get them familiar with the system. Also, the face-to-face arrangement allowed the par-
ticipants to communicate with the experimenter using hand gestures to aid in the experimental
procedure (explained further in Section 5.3).

5.3 Experiment Task

A trial of the task was to revise a test sentence (to-be-edited sentence) to match a given correct
version of the sentence. For each trial, participants began by listening to two sentences: first, the
correct sentence, followed by a test sentence that differed from the correct one in either one or
two text positions. A one-word difference between the test sentence and correct sentence served
as a trigger for correction. The participants were asked to edit the test sentence using a given
technique. Participants could make multiple attempts to complete a trial. Also, they could opt to
rehear the correct sentence at any time—asmany times as needed—by requesting the experimenter
with a hand gesture to replay the sentence. A trial ended in either of the following conditions:
(1) a participant signaled the experimenter to move to the next trial; and (2) a participant made
three consecutive failed attempts to correct the same error. The latter condition was to ensure
that the experiment would not get stuck at a particular trial because of repeated errors in the
recognition of the same word(s).
We operationalized the Complexity of edits with two factors. First, we defined the number of

triggers (NumTriggers) embedded in one test sentence—OneTrigger and TwoTriggers. As one trig-
ger required a participant to make one editing operation to correct it, two levels of NumTriggers
gave us two types of tasks, each with a different level of complexity. For each of the two Com-

plexity levels, different factors had to be defined to formalize the construction of experimental
tasks.

5.3.1 OneTrigger Tasks. A OneTrigger task was designed to use a test sentence with one out
of three TriggerTypes (Add, Delete, Replace) embedded. The three TriggerTypes were evenly
distributed across all the OneTrigger tasks and covered all our tested editing operations.

5.3.2 TwoTriggers Tasks. From initial pilot studies, we found that with two triggers embedded
in one sentence, both the position of the triggers and the types of edit operations required for the
correction affect the editing complexity. Thus, based on our experience, we operationalized the
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Table 2. Examples of Four TriggersPlacement with Two One-Word Correction Triggers (in Bold)

in Each Test Sentence

TriggersPlacement Test Sentence

Adjacent-Same Semantic (AdjSame) Last night, | my crazy brother and I | had dinner | at a restaurant.

Adjacent-Diff. Semantic (AdjDiff) Last night, | my friends andme | having dinner | at a restaurant.

NonAdjacent-Same Semantic (NonadjSame) Last night, | myMom and Dad | had dinner | at a restaurant.

NonAdjacent-Diff. Semantic (NonadjDiff) Last night, | my brother and I | had lunch | at a restaurant.

The test sentences are segmented by semantics. For each test sentence, the correct sentence is: “Last night, my friends and

I had dinner at a restaurant.”

Complexity of a TwoTriggers task with two factors: TriggersPlacement and OperationCombi-
nation. For TriggersPlacement, we defined a semantic segment as the smallest unit in a sentence
that can independently answer one of the who, what, where, why, when, and how questions. For
instance, the sentence “<Joe><drove><to the railway station><at the outskirts of the city>”
has four semantic segments. TriggersPlacement was defined based on whether the two triggers
were embedded adjacent to each other (Adj and Nonadj) and whether or not they were within the
same semantic segment (Same and Diff). Combining these two parameters gave us four types of
TriggersPlacement: NonadjSame, NonadjDiff, AdjSame, and AdjDiff (as shown in Table 2). Fur-
thermore, the types of edit operations required to correct each of the two triggers affect the edit-
ing complexity; for instance, it might be easier to combine two edits in one correction utterance
if they require the same edit operation to correct it. Thus, we defined OperationCombination
to distinguish these two situations: SameOper (Add–Add, Delete–Delete, Replace–Replace) and Dif-
fOper (Add–Delete, Add–Replace, Replace–Delete). Together, they covered the full combination of
the three editing operations.
To further ensure equal complexity of tasks under the same conditions, we constructed sen-

tences for OneTrigger with four semantic segments with a mean length of 55.83 characters (SD =
3.65), and TwoTriggers sentences with four to five semantic segments with a mean length of 67.19
characters (SD = 3.41). For OneTrigger, the single trigger was always placed in the second or third
semantic segment of the test sentence, while for TwoTriggers, the two triggers were placed either
in the second and third, or in the third and fourth segments such that they satisfy the conditions
of TriggersPlacement.

5.4 Design and Procedure

We employed a within-subject design for this experiment. As explained above, Complexity was
operationalized by different factors for OneTrigger and TwoTriggers sessions. Therefore, we had
OneTrigger sessions employing a 2 × 3 design with 2 levels of Techniqe (Commanding, Re-
dictation) and 3 levels of TriggerTypes (Add, Delete, Replace); TwoTriggers sessions employed a
2 × 4 × 2 design with three factors: Techniqe (Commanding, Re-dictation), TriggersPlacement
(NonadjSame, NonadjDiff, AdjSame, AdjDiff), and OperationCombination (SameOper, DiffOper).

To better counterbalance the order effect between the two Techniqe conditions, participants
first performed all the tasks for the OneTrigger and TwoTriggers sessions for a given technique and
then moved to the second technique. Half of the participants performed Commanding first and Re-
dictation later, while the other half performed Re-dictation first and Commanding later. For each
Techniqe, participants were first briefed on the technique, after which they performed a training
task with at least three trials (one each for add, delete, and replace operations) with one trigger
embedded in the test sentence. Participants started the measured trials once they felt comfortable
with the technique.
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The measured trials for each Techniqe began with an OneTrigger session and continued with
a TwoTriggers session for all participants. After finishing all the tasks for one Techniqe, partic-
ipants filled out a NASA-TLX test [14] to assess the task load and a System Usability Scale (SUS)
questionnaire [4] to assess the overall usability of that technique. At the end of the experiment,
we interviewed the participants on their preferred technique and their subjective experiences.
For OneTrigger sessions, the presentation orders of TriggerTypes were counterbalanced across

techniques and participants. For TwoTriggers sessions, the presentation orders for Triggers-
Placement and OperationCombination were counterbalanced across participants using a Latin
Square. In the end, there was one trial per combined condition, which gave us a total of 16 partic-
ipants × 2 Techniqe × (OneTrigger [3 TriggerTypes] + TwoTriggers [4 TriggersPlacement ×
2 OperationCombination]) = 384 trials. The entire experiment lasted for about an hour.

5.5 Data Collection

We collected the following. (1) Task-Completion Time (TCT): A timer was started when a partici-
pant started listening to the test sentence and was stopped on trial completion. (2) NumAttempts:
number of attempts made by a participant to finish a trial. (3) NumReplay: number of times a
participant requested the experimenter to replay the correct sentence. (4) ErrorIndex: Error index
was calculated as the ratio of the edit distance between the correct and the test sentences to the
edit distance between the correct and the revised sentences. Hence, ErrorIndex = 0 means that the
revised sentence matches the correct sentence exactly, while ErrorIndex � 1 signifies that the re-
vised sentence has the same (ErrorIndex = 1) or more number of errors (ErrorIndex > 1) than the
unrevised test sentence. We used the Levenshtein distance [17], a commonly-used string metric, to
compute the edit distance between the two strings. (5) Subjective experience: We collected the par-
ticipants’ perceived SUS ratings and weighted NASA Task Load Index ratings for each technique.
Their subjective feedback was collected through semistructured interviews.

5.6 Results

5.6.1 Task-Completion Time.

H3 partially confirmed: Commanding is faster for single deletion, although not significantly faster.
For OneTrigger conditions, a repeated-measures ANOVA was performed on TCT ∼ Techniqe ×
TriggerTypes. No significant main effect was observed for Techniqe (F1,15 = 2.03, p = .175)—
althoughDeletionwith Commanding (20.31± 4.03) was faster thanwith Re-dictation (27.8± 11.17),
the result was not found to be statistically significant. However, we found a significant main effect
of TriggerTypes (F2,30 = 3.95, p = .03) on TCT, with effect size (η2 = 0.21). Posthoc tests with
Bonferroni correction revealed thatDeletewas significantly faster thanAdd (pbonf = .027). Figure 6
shows the task-completion times with Commanding and Re-dictation for OneTrigger tasks.

H1 confirmed: Re-dictation is faster than Commanding for complex editing operations.
For TwoTriggers conditions, a repeated-measures ANOVA was performed on TCT ∼ Techniqe
× TriggersPlacement × OperationCombination. We found significant main effects of Tech-
niqe (F1,15 = 36.56, p < .001, η2 = 0.709) and TriggersPlacement (F3,45 = 4.23, p = .01, η2 =
0.22) on TCT. Whether the two embedded triggers were the same (SameOper) or different (Dif-
fOper) had no significant effect on TCT. Furthermore, we found a significant Techniqe × Trig-
gersPlacement interaction effect (F3,45 = 6.23, p = .001, η2 = 0.293). To analyze this interaction,
a pairwise analysis was performed between Techniqe (Commanding, Re-dictation) for each
TriggersPlacement (NonadjSame, NonadjDiff, AdjSame, AdjDiff). Wilcoxon signed-ranks tests
indicated that for NonadjSame (W = 136,p < .001, rrb = 1.0) and AdjDiff (W = 133,p < .001, rrb =
0.956), Re-dictation was significantly faster than Commanding (see Figure 7). The above effects
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Fig. 6. TCT for OneTrigger—Technique × TriggerTypes.

Fig. 7. TCT for TwoTriggers—Technique × TriggersPlacement with a significant interaction effect.

tell us that Re-dictation is faster than Commanding for editing multiple words that are in close
proximity but in different semantic segments. If multiple words are in the same semantic segment,
Re-dictation is faster than Commanding when the word positions are away from each other (not
adjacent).
Both the placement of edits with respect to semantic segments and the distance between the edits
matter.
On one hand, Re-dictation was significantly faster than Commanding for (1) AdjDiff, but not for
AdjSame (Figure 7); and (2)NonadjSame, but not forNonadjDiff. This shows that even if the relative
distance between two edited words is the same, whether or not these words are within the same se-
mantic segment significantly affects the task-completion time. On the other hand, Re-dictationwas
significantly faster than Commanding for (1)NonadjSame, but not forAdjSame; and (2)AdjDiff, but
not forNonadjDiff (Figure 7). This shows that even if the edited words are similarly positioned with
respect to the semantic segments in the text, the distance between the edited words significantly
affects the task-completion time.
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To understand why, let us analyze each technique in more detail. To form an editing instruc-
tion with Commanding, users need to: (1) decide on the type of operation (add/delete/replace) that
needs to be performed; (2) recall the syntax for making the intended operation; and (3) remember
the target (to-be-modified) words in the sentence. Meanwhile, Re-dictation does not require users
to remember or specify operations and target words. Users simply repeat part of the original sen-
tence with the modifications included. Hence, if a correction spans multiple semantic segments, it
is easier to make a Re-dictation utterance, which has the same grammatical structure (that of the
English language) as the original text. However, a Commanding utterance needs to follow a par-
ticular command syntax. Consequently, the cognitive load of recalling information and framing
a Commanding correction utterance gets compounded with an increase in the number of seman-
tic segments that need to be corrected. While for simple modifications, it is still easy for users to
perform Commanding and the difference between the two techniques is not obvious, but for more
complex editing, the benefits of Re-dictation are enlarged and are more apparent.
In fact, we found that when the editing situation was more complex (such as NonadjSame or

AdjDiff), it was difficult for participants to issue a single command to fix all the problems. As a
result, participants mostly formed separate edit commands to edit multiple words, thereby leading
to an increase in the task-completion time. Yet, with Re-dictation, it was still possible to complete
all the corrections in one go. This finding is consistent with our analysis of the number of attempts
that participants made to complete the editing tasks (see later).

5.6.2 Number of Attempts. A repeated-measures ANOVA was performed on NumAttempts ∼
Techniqe × TriggerTypes for OneTrigger conditions and NumAttempts ∼ Techniqe × Trig-
gersPlacement × OperationCombination for TwoTriggers conditions. For OneTrigger, there
was a significant main effect for Techniqe (F1,15 = 7.15, p = .017, η2 = 0.323), with Re-dictation
(1.63 ± 1.2) requiring a significantly fewer number of attempts to complete a task than with Com-
manding (2.15 ± 2.04). There was also a significant main effect of TriggerTypes (F2,30 = 4.8,
p = .016, η2 = 0.243) on NumAttempts, with Delete (1.125 ± 0.34) requiring a significantly fewer
number of attempts than Add (2.41 ± 2.15) and Replace (2.125 ± 1.74). There was no significant
Techniqe × TriggerTypes interaction effect.
For TwoTriggers, there was a significant main effect for Techniqe (F1,15 = 27.74, p < .001,

η2 = 0.649) with Re-dictation (2.32 ± 2.1) requiring a significantly fewer number of attempts than
with Commanding (4.73 ± 3.39), and TriggersPlacement (F3,45 = 3.21, p = .032, η2 = 0.176). Fur-
thermore, a significant Techniqe × TriggersPlacement interaction effect was found on Num-
Attempts (F3,45 = 7.62, p < .001, η2 = 0.337), similar to the one observed for TCT (Figure 7). The
number of attempts is probably a main contributor for the effects found on TCT.

5.6.3 Number of Replays of the Correct Sentence.

H2 confirmed: Re-dictation is easier to use than Commanding for making longer and more complex
edits.
A repeated-measures ANOVAwas performed on the number of replays of the correct sentence that
was requested by the participants during a task trial:NumReplay∼Techniqe×TriggerTypes for
OneTrigger conditions and NumReplay ∼ Techniqe × TriggersPlacement × OperationCom-
bination for TwoTriggers conditions. For OneTrigger, no significant main or interaction effects
were observed. For TwoTriggers, there was a significant main effect for Techniqe (F1,15 = 32.37,
p < .001, η2 = 0.683) with participants requesting a significantly fewer number of replays with
Re-dictation (0.45 ± 0.7) than with Commanding (1.23 ± 1.13). These findings suggest that Com-
manding imposes a higher demand for memorizing the text content.
We also observed a significant main effect for TriggersPlacement (F3,45 = 4.71, p = .006, η2 =

0.239) on NumReplay. Posthoc tests with Bonferroni correction revealed that for AdjSame there

ACM Transactions on Computer-Human Interaction, Vol. 27, No. 4, Article 28. Publication date: August 2020.



28:20 D. Ghosh et al.

was a significantly fewer number of replays than for AdjDiff (pbonf = .027) and NonadjDiff (pbonf =
.035). Therewas also a significantmain effect for OperationCombination (F1,15 = 37.74,p < .001,
η2 = 0.716) with SameOper (0.6 ± 0.93) having a significantly fewer number of replays than for
DiffOper (1.08 ± 1.05). These findings suggest that if an edit operation involves editing words that
span multiple semantic segments, then the need for memorizing the text content is higher than
had the words been part of the same semantic segment.

5.6.4 Error Index. A repeated-measures analysis of variance (ANOVA) was performed on Er-
rorIndex ∼ Techniqe × TriggerTypes for OneTrigger conditions and ErrorIndex ∼ Techniqe ×
TriggersPlacement × OperationCombination for TwoTriggers conditions. There were no sig-
nificant main or interaction effects, irrespective of the number of triggers. Though not significant,
overall, Commanding had a fewer number of errors than Re-dictation for both OneTrigger (Com-
manding: .05 ± .16, Re-dictation: .21 ± .51) and TwoTriggers (Commanding: .25 ± .47, Re-dictation:
.43 ± 1.69). These numbers suggest that Commanding allowed a more precise control over text
modification than Re-dictation.

5.6.5 Subjective Experiences. AWilcoxon signed-rank test for both SUS and NASA-TLX scores
indicated that the perceived usability with Re-dictation (75.94 ± 14.3) was significantly higher
(W = 5.5,p = .006, rrb = −0.919) than with Commanding (55.47 ± 21.43). Also, the task load as
measured using a weighted NASA-TLX was significantly lower (W = 115,p = .016, rrb = 0.691)
with Re-dictation (45.17 ± 15.8) than with Commanding (60.37 ± 24.05). These findings suggest
that Re-dictation results in a lower task load and a higher perceived user experience. Thus, these
findings further confirm H2 and is consistent with our findings from the quantitative measures.
Two major perceptions emerged from the participants’ subjective feedback as follows:

(1) Re-dictation feels more “natural”: During the interviews, 11 of the 16 participants men-
tioned that Re-dictation felt more “natural” as it aligned to their mental model of how
they “would correct a human-being.” Moreover, seven participants mentioned that with
Re-dictation, if the system failed to correctly align a correction utterance with the test
sentence, they were rather forgiving and willing to include more words from the sur-
rounding context (left/right context) in their subsequent correction attempt so as to guide
the system better. On the other hand, four participants were not as comfortable repeat-
ing a command-based correction utterance. This is likely due to the fact that Re-dictation
provides more alternatives for participants to correct an error; e.g., if the target is mis-
aligned or a recognition error happens, the participants can help the system to correct it
by providing more context words, and as we know, the system’s recognition ability typ-
ically increases with more context, which often solves the problem. For Commanding, if
the system makes a mistake, the only way to correct it is to repeat the same instruction,
and if the system still fails to recognize it correctly, the participant has no other way to
help the system, resulting in more frustration.

(2) Commanding allows more control: Although we discussed many benefits of Re-dictation,
we cannot deny the value of Commanding. In fact, participants also recognized the advan-
tages of the Commanding technique. A total of 10 out of the 16 participants suggested that
command-based deletions align with their thought process while mentally conceiving a
deletion: “I need to delete this” rather than “this is how I want my correct sentence to be” (P2).
As P1 mentioned, “Commands give you a (sic) precise control over what you want to change,
with the second-approach (Re-dictation) you have to rely on the computer to decide how the
change should look like (referring to the alignment).” P12 mentioned, “it (Commanding) is
consistent even when it fails. I would, sort of, get the sense (of) when it would fail even before
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I got the error message (error feedback by the system). It’s like you are in control and you
are responsible for when it fails.” Evidently Commanding, despite its inherent limitations,
offers up a fine-grained control for editing text.

5.7 Summary

This experiment provided us an understanding of how users use Re-dictation and Commanding
techniques for eyes-free text editing. While Re-dictation was more efficient and easier to use than
Commanding for tasks that require more complex editing operations, Commanding performed
similarly to Re-dictation for single operations and worked better for deletions. We identified two
important factors in play: placement of the required edits with respect to the semantic segments
of the text and the number of intervening words by which the required edits are separated. As
mentioned earlier, we found a significant interaction effect of these two factors on the users’ text-
editing efficiency. Our findings from this experiment suggest that given both techniques have their
unique advantages, supporting both techniques in a unified system might improve the usability
and naturalness of user interaction with an eyes-free text-editing system. In particular, a unified
system would allow the users a preferred choice of technique based on the edit length and com-
plexity of the intended correction.

6 VOICEREV: COMBINING RE-DICTATION AND COMMANDING IN THE
SAME SYSTEM

Since our goal was to assess the effects of each technique on text-editing interactions, the first
iteration of our tool was designed to function with either of the two techniques individually. Yet,
as suggested by the findings from Study 2, supporting both the techniques together in a unified
system might improve the efficiency and user experience of editing text eyes-free (more under
Section 8). To accommodate this, we developed in-house a voice-based tool—VoiceRev, a novel
system to combine both Commanding and Re-dictation together in the same interface such that
the user can seamlessly switch from one technique to the other without having to switch modes.
With the techniques combined, our tool should classify an incoming user utterance as either a
Commanding utterance or a Re-dictation utterance and execute the corresponding text-editing
routine.
A schematic of the unified system is shown in Figure 8. First, the user utterance is cleaned off

conversational-styled elements (if present) and checked for command keywords (or synonyms)
similar to the design for the Commanding technique described earlier (Section 4.2). If a keyword
is matched and associated parameters required to carry out a command-based editing operation
could be found, the user utterance is classified as a Commanding utterance. Otherwise, the system
treats the utterance as a Re-dictation utterance and performs similarity matching to compute po-
tential alignment positions (Section 4.3.2). To reduce the number of false positives while classifying
an utterance as a Re-dictation utterance, if the maximum alignment probability across all potential
alignment positions is below a certain threshold = 0.3 (experimentally determined through trial
and error), no editing action is performed and an appropriate voice error feedback is provided to
the user.

7 STUDY 3: EVALUATING VOICEREV—RE-DICTATION WITH COMMANDING

Based on our findings from Study 2, we had hypothesized that combining both Commanding and
Re-dictation in a single coherent interface would improve the usability of eyes-free text-editing
systems. To test this hypothesis, we implemented a voice-based system that combines the two
techniques. Our objective in this study was to evaluate the unified system with realistic tasks
where participants would use speech to first compose a piece of text and then revise it using our
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Fig. 8. Design of the unified system combining both Commanding and Re-dictation—system components

and information flow.

system. This setting also represents one of the promising application scenarios where we foresee
our system being used.

7.1 Participants

Eight paid participants (four female, four male; age mean = 23.3 years, SD = 3.1) were recruited
fromwithin the university community. Three were native English speakers. Two participants were
occasional users of voice-based assistants (one a Siri user and the other an occasional user of
Amazon’s Alexa assistant on an Echo Dot device), whereas none of them had any prior experience
with voice-based dictation or correction systems. None of the participants had taken part in either
of the two previous studies.

7.2 Apparatus

With the exception of the text-editing interface for which we used our unified system, VoiceRev,
the rest of the apparatuses used were exactly the same as the ones used for Study 2.
VoiceRev was designed to operate in two distinct modes: composition and revision, with manual

mode switching. At the start of the experiment, participants were asked to compose a piece of text
using speech. For this, the system was set to the compositionmode, which allowed composition of
the text real-time using the system’s voice-dictation feature. Also, the system allowed the experi-
menter to add punctuation to the text even during the live transcription process. Using this feature,
the experimenter added the relevant punctuation by placing commas and sentence end marks (pe-
riod, question mark, or exclamation mark) at appropriate locations in the text. In the composition
mode, the system does not interpret any user utterance as a correction utterance, but simply tran-
scribes the dictated text into a text editor. After composing the text, participants revised the text
using the revisionmode. The mode switching from composition to revision was done manually by
the experimenter. Unlike the composition mode, in the revision mode, the system interprets every
user utterance as a correction utterance.
Furthermore, in the revision mode, participants could choose between Commanding or Re-

dictation to make a correction. The system was designed to understand a correction utterance
as either Commanding or Re-dictation based on how the utterance was framed, without the need
for explicitly switching from one technique to the other. Hence, in effect, to revise a composed
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block of text, a participant could use Commanding for some corrections and Re-dictation for the
others.

7.3 Task

The task for the participants was to first compose a piece of text using voice dictation (six to eight
sentences) and then revise the dictated content eyes-free. Participants were instructed to revise
the previously dictated text to its best version possible, i.e., free from logical and grammatical
mistakes, having a clear and coherent flow, and depending on the type of content, publishable
either on social media or as a more formal document, e.g., a formal e-mail to a professor.
Before the composition phase began, participants were given a list of topics to choose from,

either formal or informal in nature. The topics were selected to encourage the participants to speak
freely: a movie/TV series review, an e-mail to a professor/industry seeking summer internship
opportunities, an e-mail to the housing management with a complaint, a recent travel experience,
and a recent current affair that had caught the participant’s attention. If a participant did not feel
comfortable with any of the given topics, they were free to decide on a topic of their choice. After
selecting a topic, participants could optionally take 30 seconds to mentally prepare an outline of
what they would talk about during the composition phase.

7.4 Design and Procedure

Each participant took two trials of the composition-and-revision task, each trial with a different
topic. For each trial, a participant would start by choosing a topic and then perform the composition
before finally moving on to the revision. For the revision, a participant could make multiple cor-
rection utterances and revise as many regions of text as was deemed necessary by the participant.
Before starting with the task trials, participants were given a training session to familiarize

themselves with both the Commanding and the Re-dictation techniques of text editing. The train-
ing session was followed by a warm-up session where the participants composed a short text and
then revised it using the two techniques. The warm-up session ended when the participants felt
confident in using both the techniques.
After the two task trials, we conducted a short semistructured interview for 10 minutes. The

entire experiment lasted for approximately 70 minutes. Both the interview (audio) and the task
trials (screen and audio) were fully recorded with the participants’ informed consent.

7.5 Data Collection

For every correction utterance made by a participant, we recorded the technique used (Command-
ing or Re-dictation). In the case of a Commanding correction utterance, we recorded the correction
operation attempted (Add, Delete, or Replace), and the number of words that were modified by a
correction utterance, NumWords.

We also measured two derived counts: the number of failed attempts while making a
command-based correction—NumCommandFails and the number of failed attempts while making
a re-dictation-based correction—NumRedictFails. In our system, we had implemented a feature
to label a correction utterance as “failed” with a simple key-press. During the experiment, the
experimenter would label a participant’s utterance as failed if the system failed to perform what
was intended by the participant either due to a recognition error or due to a system error. A
recognition error would occur if the speech recognizer misrecognized a participant’s utterance
in part or in whole. For example, if the participant said “delete buy,” but the system picked
it up as “delete by,” then the deletion command would fail if “by” was not present in the
text. On the contrary, a system error would occur if the speech recognition was as intended
by the participant, but the action performed by the system was different from the participant’s
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Fig. 9. Count distribution of successful correction utterances.

Fig. 10. Comparison of the number of words modified with the Commandingand Re-dictation operations.

An average line is plotted to show the average number of words modified by each operation.

desired action. For example, to insert the missing word “fox” after “brown” in the sentence: “The
quick brown jumped over the lazy dog”, the participant re-dictated the erroneous portion as “fox
jumped over”; however, the system misaligned the correction utterance with the text resulting in
the corrected text, “The fox jumped over the lazy dog.” This would result in a system error as the
alignment determined by the system was different from what was intended by the participant.

7.6 Results

After discarding utterances where the participants did not attempt any insertion, deletion, or re-
placement (e.g., read/repeat or undo/redo requests), 64 NumCommandFails and 39 NumRedictFails,
we collected a total of 266 successful correction utterances across 8 participants. These 266 utter-
ances consisted of 165 Re-dictation utterances, 77 command-based deletions, 18 command-based
replacements, and 6 command-based insertions (Figure 9).
Both the mean and the variability for NumWords with Re-dictation (6.01 ± 3.88) were much

higher than any of the command-based operations (see Figure 10). Mean of NumWords for
command-based delete (1.82 ± 1.74) was higher than both replace (1.39 ± 0.5) and add (1.17 ±
0.41). The higher mean for Re-dictation corroborates our findings from Study 2 that Re-dictation
is more suited to and the preferred technique for making longer and more complex changes to
the text. Furthermore, the higher variability for Re-dictation combined with the low number of
command-based replacements and insertions (only about 9% of the total number of successful
edit operations) shows the participants’ preference in using Re-dictation for also making shorter
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Fig. 11. Timeline of participants’ successful correction utterances. Size of each symbol, representing an edit

operation, is proportional to the number of words modified in that operation, i.e., NumWords (size is linearly

scaled between 0 and 22). Labeled are two utterances from P7 showing consecutive Commanding and Re-

dictation utterances.

edits, especially for insertions and replacements. Command-based deletions, however, made up
≈29% of the total number of successful edit operations, echoing our findings from Study 2 that
Commanding is easier and the more suitable technique for deleting shorter segments of text.
Figure 11 shows a timeline of participants’ correction utterances (failed attempts not shown).

Two consecutive utterances from P7’s data (utterance IDs 32 and 33) have been labeled on the
figure as sample utterances—the first is a command-based change utterance and the second a Re-
dictation utterance. This shows that participants could implicitly switch between techniques just
by altering the framing of the utterances.

7.6.1 False Positives. Of the 165 Commanding utterances (101 successful, 64 failed), 22 utter-
ances were misclassified as Re-dictation utterances. The reason for these misclassifications was
mostly speech-recognition error in detecting the command keyword. Thesemisclassificationswere
counted as false positives for Re-dictation (≈13.3%). The percentage of false positives for Com-
manding (Re-dictation utterances misclassified as Commanding) was much smaller (≈7.35%).

False-positive utterances were confusing for the participants as they would not be sure as to
why a Commanding utterance behaved as a Re-dictation utterance or vice versa. However, the
recovery was not difficult. For example, false positives for Commanding (i.e., correction utterance
was originally intended to be a Re-dictation utterance) mostly did not conform to the Command-
ing grammar structure and lacked the well-formedness of a valid command. Consequently, the
command would fail without changing the text. To recover, participants would simply repeat the
Re-dictation correction utterance or include more context words in their repeated correction at-
tempt. On the other hand, false positives for Re-dictation would cause unwanted alterations in the
text, but with the ability to perform an undo operation, it was easy for participants to recover from
the error.
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In summary of this study, first, our approach of combining the two techniques in one system
proved promising given the positive feedback about its usability. In the interview, P4 mentioned,
“It’s great that I could use the two methods (techniques) interchangeably (without explicit switching).
Actually, I was not thinking about whatmethod I am (sic) using, I just said what came tome naturally.”
P2 mentioned, “While deleting something, saying ‘delete this’ or ‘delete that’ felt more natural than
repeating that part (correction by Re-dictation). For others (other operations), I felt re-dictating it felt
way more (sic) easier.” Secondly, the results from this study confirmed the ecological validity of
our findings from Study 2. Re-dictation was overall the preferred technique for making longer and
more complex (complexity as defined in Section 5.3 of Study 2) corrections, whereas for deleting
shorter segments of text, command-based deletion was preferred to using Re-dictation.

8 DISCUSSION

In this section, we put our findings from Studies 2 and 3 in perspective and discuss the implications
for the design of future voice-based text-editing interfaces.

8.1 Why Should Future Systems Support Re-Dictation?

Results from Studies 2 and 3 showed that Re-dictation is more efficient overall and easier to use, es-
pecially for making longer edits and more complex operations. In transcribing dictated speech, the
automated speech transcription suffers from recognition errors even with state-of-the-art speech
recognition. Oftentimes, the wordings of these errors are difficult to detect from the TTS audio of
the transcribed text and, thus, difficult to speak out in a correction utterance. Unlike Commanding,
Re-dictation does not involve speaking out the erroneous words for making a correction. This not
only reduces the need for recalling the content, but is also very useful in fixing the recognition
errors that would otherwise be very difficult to fix without a visual feedback of the text. In such
situations, the interaction gets stuck or falls in an error-correction loop if the user can only use
Commanding. Although, Re-dictation can be used with a screen as well, its benefits are even more
apparent in eyes-free scenarios.

8.2 Users’ Choice between Commanding and Re-Dictation

Although both Studies 2 and 3 revealed high-performance benefits of Re-dictation, we noticed that
in the Wizard-of-Oz study, a smaller percentage of correction utterances were re-dictation utter-
ances as compared to command-based utterances. This discrepancy might partly be attributed to
the users’ existing mental model of how a computing system should be instructed—using specific
commands. Also, the inherent rigidity in how a command should be framed to be interpreted cor-
rectly gives users a sense of precise control in making the desired changes to the text. Hence, with
no introduction to any particular technique, participants of the Wizard-of-Oz study demonstrated
a preference for using commands. In contrast, Study 3 showed users’ preference for using more
re-dictation utterances. This might be due to a prior introduction to the Re-dictation technique
via instructions and training. While the change in user behavior was likely due to an enhanced
understanding of what is possible, further studies are needed to investigate how exactly the men-
tal model of existing technology can shape users’ unconscious behavior of adopting innovative
technologies.
Furthermore, as the results of Studies 2 and 3 showed, command-based utterances are suitable

for one-word edit operations, especially deletions. Combinedwith the users’ existingmental model
of using commands for giving instructions to a system, a voice-based text-editing interface that
does not take into consideration such a mental model might frustrate some users, at least during
the on-boarding stage. Therefore, we suggest the inclusion of both Commanding and Re-dictation
in future systems to support voice-based editing of text.
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Fig. 12. Example of how the knowledge of user behavior can be leveraged to improve classification accuracy.

8.3 How to Combine Both Commanding and Re-Dictation in One Interface?

Unlike a system supporting only one technique, either Commanding or Re-dictation, a system sup-
porting both the techniques first needs to classify a correction utterance as either Commanding
or Re-dictation. The accuracy of the classification determines the success of the correction utter-
ance in making the desired correction. The probability of an accurate classification decreases if
the speech recognition is not accurate or if the grammar to interpret the correction utterance is
relaxed, e.g., to support conversational-styled elements in the utterance. Our work provides in-
sights into the user behavior, which can be used to improve the classification accuracy. Figure 12
shows an example of how classification accuracy can be improved by our enhanced knowledge of
the user behavior.
In the example, the user says a correction utterance, “Delete quick.” However, a recognition

error results in the transformed utterance, “be late quick.”With no command keyword present, the
utterance might be misclassified as a Re-dictation utterance. Here, our knowledge of user behavior
from Study 3 can be leveraged to get the correct classification. To elaborate, computing fuzzy
string matching or phonetic similarity on the misrecognized utterance tokens against a list of valid
keywords would reconstruct the utterance as “delete quick,” which upon parsing separates the
utterance into a keyword (delete) and a content parameter (quick). We know from Study 3 that
users prefer command-based deletion for deleting text segments of length 1.82 ± 1.74 words. This
knowledge can be leveraged to rightly classify the utterance as Commanding utterance despite the
initial misrecognition. Thus, the text would be modified as was initially intended by the user.

9 LIMITATIONS AND FUTURE WORK

We have used state-of-the-art Google Cloud Speech Recognition API to conduct our study, but
there are still recognition errors that affect the user experience of voice-based text editing. In our
studies, we have tried to balance the number of native English-speaking participants to the number
of nonnative English-speaking participants and believe that our results are fairly robust against
recognition errors. However, in the future, if the recognition accuracy is improved, the results of
our study should be verified. Also, currently, our system does not support disambiguation between
homophones (words with the same pronunciation but different meanings, e.g., to, two, and too).
Since this limitation affects both our studied techniques, we believe that our findings from the
relative performance and usability comparison between the two techniques would apply to future
systems independent of their ability to support homophone disambiguation. Nonetheless, we sug-
gest that future explorations devise systems to identify and disambiguate between homophones
and study if this enablement affects the two techniques differently.
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Furthermore, our implementations of both the Commanding and the Re-dictation techniques
are based on the English language. However, since both these techniques support word-level edit-
ing, their use can be extended to even logographic writing systems like Chinese and Japanese. In
logographic writing systems, a logogram is a written character or glyph that represents an en-
tire word or phrase. So, essentially logograms function as words that form the units of the spoken
language, thus making our techniques relevant to such languages. Yet, as our findings from the
comparative analysis of Commanding and Re-dictation are based on the English grammar and its
underlying semantic structure, the findings must be verified before applying to languages with a
different grammar structure.
In addition, our unified system combining the Commanding and Re-dictation techniques allows

the user to modelessly switch between the two techniques. However, the implicit switching might
sometimes result in misclassification of the technique based on how the correction utterance was
framed or recognized. Future works should explore more sophisticated classification algorithms
to improve the classification accuracy of users’ correction utterances. Moreover, cases of misclas-
sification can be confusing for the users. Future research should explore ways to better inform
the users about the system’s performed classification, say, by assigning distinct nonspeech audio
sounds for Commanding and Re-dictation. Furthermore, currently, alignment computation for re-
dictated utterances is done based on the 1-best recognition result of the speech recognizer. The
alignment accuracy might be improved by a deeper integration of the alignment computation with
the results from the speech recognizer, say, by considering the N-best list of results instead of just
the 1-best result.
Furthermore, the composition and revision of text that our system supports are differentiated

by manual switching between the two modes. This is in keeping with the scope of our current
research, which was to explore only revision techniques. Yet, in a more realistic setting, users may
constantly switch back and forth between composing and revising text. For example, a user may
compose only a part of the text and want to revise it before moving on to compose the rest of the
text. Future research can explore the user behavior of switching between the two modes and find
more sophisticated mode-switching techniques.
Finally, future work should explore multimodality in input/output to further reduce the cogni-

tive load of editing the text eyes-free. Multimodal input might include voice with gesture input,
while multimodal output may explore audio with ambient and glanceable displays, among other
techniques. Multimodality can offload some of the information that is currently being conveyed
using only the audio and the voice channel, and may further improve the usability of text-editing
interactions without the requisite of maintaining constant visual engagement with the text.

10 CONCLUSION AND IMPLICATIONS

With the advancement of speech recognition and machine learning technologies, voice-only in-
terfaces are likely to play a more important role in HCI and in our lives. However, the utility of
such interfaces would likely be limited if they cannot support real-time modification of the users’
spoken content. This research explores how to better design a voice interface for users to edit text
eyes-free. Informed by the naturally emerging user behavior from aWizard-of-Oz study, we imple-
mented and compared two eyes-free text-editing techniques: Commanding and Re-dictation, and
identified their pros and cons in different task scenarios. As an optimal solution, we combined the
two techniques in a novel unified system, VoiceRev, and evaluated it with realistic tasks. Results
confirmed the ecological validity of our previous findings.
Hence, our studies provide convincing evidence that despite the challenges arising from the

lack of visual feedback, we can improve the user experience of eyes-free text editing by com-
bining Commanding and Re-dictation techniques in a single system. However, the implications
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of our findings extend beyond eyes-free scenarios. As suggested by Ghosh et al.’s EYEditor [12],
a smartglass-based system that uses voice input to correct text on the go, both the user experi-
ence and the efficiency of text editing were greatly enhanced by allowing users to correct the text
by re-speaking over erroneous parts with additional support for making precise command-based
deletions in the text. Also, EYEditor’s voice design allowed the users to better multitask than with
a smartphone—with EYEditor, the users could maintain better awareness of their walking path
while correcting the text. These findings suggest that our current research can be extended to a
visual user interface to improve the user experience of on-the-go text editing.
Furthermore, our techniques and findings can be used in a variety of applications other than just

text-processing software, e.g., in applications designed for Intelligent Personal Assistants (IPAs)
and Voice User Interfaces (VUIs). A concrete use case of where our findings can be applied might
be to make inline corrections to voice commands in VUIs—say, a Google Home user wants to set a
calendar event and speaks out a title for the event, but the title gets misrecognized; the user on lis-
tening to the audio confirmatory feedback of the misrecognized title can quickly make a correction
by Re-dictation or Commanding, based on the length and/or complexity of the correction.

ACKNOWLEDGMENTS

We thank Yang Chen for her generous help with designing some of the figures in the manuscript
and Vanitha S. for designing Figure 5.

REFERENCES

[1] Dina Abdelrazik. 2017. Enabling Voice in the Smart Home: A Parks Associates Whitepaper Developed for ULE Alliance.

Parks Associates Technical Report. Parks Associates, Addison, TX.

[2] Amazon.com. 2020. Amazon.com: Customer Reviews: Mail Box. Retrieved March 26, 2020 from https://www.amazon.

com/product-reviews/B01LMLFNB6.

[3] Shiri Azenkot and Nicole B. Lee. 2013. Exploring the use of speech input by blind people on mobile devices. In

Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility. ACM, New York,

NY, 1–8. DOI:https://doi.org/10.1145/2513383.2513440
[4] John Brooke. 1996. SUS-A quick and dirty usability scale. Usability Evaluation in Industry 189, 194 (1996), 4–7.

[5] Junhwi Choi, Kyungduk Kim, Sungjin Lee, Seokhwan Kim, Donghyeon Lee, Injae Lee, and Gary Geunbae Lee. 2012.

Seamless error correction interface for voice word processor. In Proceedings of the 2012 IEEE International Conference

on Acoustics, Speech and Signal Processing. IEEE, 4973–4976. DOI:https://doi.org/10.1109/ICASSP.2012.6289036
[6] JasonW. Clark, Rathinavelu Chengalvarayan, Timothy J. Grost, Dana B. Fecher, and JeremyM. Spaulding. 2011. Voice

dialing using a rejection reference. US Patent No. 8,055,502.
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