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ABSTRACT 
Poorly maintained sidewalks, missing curb ramps, and 
other obstacles pose considerable accessibility challenges; 
however, there are currently few, if any, mechanisms to 
determine accessible areas of a city a priori. In this paper, 
we investigate the feasibility of using untrained crowd 
workers from Amazon Mechanical Turk (turkers) to find, 
label, and assess sidewalk accessibility problems in Google 
Street View imagery. We report on two studies: Study 1 
examines the feasibility of this labeling task with six 
dedicated labelers including three wheelchair users; Study 2 
investigates the comparative performance of turkers. In all, 
we collected 13,379 labels and 19,189 verification labels 
from a total of 402 turkers. We show that turkers are 
capable of determining the presence of an accessibility 
problem with 81% accuracy. With simple quality control 
methods, this number increases to 93%. Our work 
demonstrates a promising new, highly scalable method for 
acquiring knowledge about sidewalk accessibility. 

Author Keywords 
Crowdsourcing accessibility; accessible urban navigation; 
Google Street View; Mechanical Turk; image labeling 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI) 

INTRODUCTION 
According to the most recent US Census (2010), roughly 
30.6 million individuals have physical disabilities that 
affect their ambulatory activities [32]. Of these, nearly half 
report using an assistive aid such as a wheelchair (3.6 
million) or a cane, crutches, or walker (11.6 million) [32]. 
Despite aggressive civil rights legislation for Americans 
with disabilities (e.g., [3, 21]), many city streets, sidewalks, 
and businesses in the US remain inaccessible [24].  
The problem is not just that sidewalk accessibility 
fundamentally affects where and how people travel in cities 
but also that there are few, if any, mechanisms to determine 
accessible areas of a city a priori. Indeed, in a recent report, 
the National Council on Disability noted that they could not 
find comprehensive information on the “degree to which 
sidewalks are accessible” across the US [24]. Traditionally, 
sidewalk assessment has been conducted via in-person 
street audits [17,29], which are labor intensive and costly 
[25], or via citizen call-in reports, which are done on a 
reactive basis. As an alternative, we propose the use of 
crowdsourcing to locate and assess sidewalk accessibility 
problems proactively by labeling Google Street View 
(GSV) imagery (Figure 1).  
We report on two studies in particular: a feasibility study 
(Study 1) and an online crowdsourcing study using Amazon 
Mechanical Turk (Study 2). Because labeling sidewalk 
accessibility problems is a subjective and potentially 
ambiguous task, Study 1 investigates the viability of the 
labeling sidewalk problems amongst two groups of diligent 
and motivated labelers: three members of our research team 
and three “sidewalk accessibility experts”—in this case, 

    

    
(a) Object in Path (b) No Curb Ramp (c) Surface Problem (d) Prematurely Ending Sidewalk 

Figure 1: In this paper, we propose and investigate the use of crowdsourcing to find, label, and assess sidewalk accessibility problems in Google 
Streetview (GSV) imagery. The GSV images and annotations above are from our experiments with Mechanical Turk crowd workers. 
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wheelchair users. We use the results of this study to: (i) 
show that the labeling approach is reliable, with high intra- 
and inter-labeler agreement within and across the two 
groups; (ii) acquire an understanding of baseline 
performance—that is, what does good labeling performance 
look like? (iii) provide validated ground truth labels that 
can be used to evaluate crowd worker performance. 
For Study 2, we investigate the potential of using crowd 
workers on Mechanical Turk (turkers) to perform this 
labeling task. We evaluate performance at two levels of 
labeling accuracy: image level, which tests for the presence 
or absence of the correct label in an image, and pixel level, 
which examines the pixel-level accuracies of the labels 
provided (as in Figure 1). We show that, when compared to 
ground truth, turkers are capable of determining that an 
accessibility problem exists in an image with 80.6% 
accuracy (binary classification) and determining the correct 
problem type with 78.3% accuracy (multiclass 
classification). Using a simple majority voting scheme with 
three turkers, this accuracy jumps to 86.9% and 83.8% 
respectively. We also examine the effect of two quality 
control mechanisms on performance: statistical filtering and 
multilevel review (see [22]). Our findings suggest that 
crowdsourcing both the labeling task and the verification 
task leads to a better quality result. We also demonstrate the 
performance/cost tradeoffs therein.  
The primary contributions of this paper are threefold: (i) the 
first step toward a scalable approach for combining 
crowdsourcing and existing online map imagery to identify 
perceived accessibility issues, (ii) measures for assessing 
turker performance in applying accessibility labels, and (iii) 
strategies for improving overall data quality. Our approach 
could be used as a lightweight method to bootstrap 
accessibility-aware urban navigation routing algorithms, to 
gather training labels for computer vision-based sidewalk 
assessment, and as a mechanism for city governments and 
citizens to report on and learn about the health of their 
community’s sidewalks (e.g., through accessibility scores 
similar to walkscore.com).  

BACKGROUND AND RELATED WORK 
We provide background on sidewalk accessibility and 
sidewalk audit methods, in addition to related work on 
crowdsourcing and image labeling.  

Factors Affecting Street-Level Accessibility 
The US Department of Transportation [33] and the US 
Access Board [20] describe common problems that inhibit 
pedestrian access, including: (i) no place to walk—paths are 
either non-existent or not well-connected to destinations 
such as schools and transit; (ii) poor walking surfaces; (iii) 
blocked pathways, either temporarily (e.g., by a vehicle) or 
permanently (e.g., by a utility pole); (iv) difficult street 
crossings (e.g., long walkway with no median, no curb 
ramps); (v) narrow sidewalks: wheelchair and scooter users 
require a wider path than ambulatory pedestrians, with most 
guidelines suggesting at least 60 inches.  

Existing Sidewalk Audit Methods   
In the US, state and federal departments conduct and 
encourage road safety audits that can also include 
walkability and pedestrian access (e.g., [17,34]). Less 
formally, community organizations organize “Walk Audits” 
to find and assess deficiencies such as missing sidewalks, 
curb ramps, and/or dangerous street crossings (e.g., [29]). 
Participatory reporting of accessibility problems has also 
been accomplished through applications that allow citizens 
to report non-emergency neighborhood issues to local 
government agencies (SeeClickFix.com) or to share 
information on wheelchair accessibility of businesses 
(Wheelmap.org); however, these applications do not 
support remote, virtual inquiry and have not been shown to 
scalably collect data on accessible public rights-of-way. 
Street and neighborhood audits are also conducted by 
researchers in public health, sociology, and urban planning 
with the goal of studying the built environment and its 
impact on human behavior (e.g., [12,17,27,30]). Since 
physical audits are often time-consuming and expensive 
[25], some studies have explored more efficient methods 
including recording video while driving for later review 
[27], or using satellite imagery and other map tools (e.g., 
[19,30]). Omnidirectional streetscape imagery such as that 
in GSV has recently been used to perform virtual audits 
[5,11,25]. Reported benefits include time-savings and the 
ability to monitor and analyze multiple cities from a central 
location [5,25]. As an emerging area of research, work thus 
far has focused on the robustness and reliability of such 
approaches. Most importantly for our work, high levels of 
concordance have been reported between GSV vs. physical 
audit data for measures including pedestrian safety, traffic 
and parking, and pedestrian infrastructure [5,11,25].  
Finally, most relevant to our work is the recent 
CrossingGuard paper by Guy and Truong [14], which 
focuses on navigation aids for visually impaired pedestrians 
and includes a small-scale study of GSV with three turkers. 
While similar in spirit, Guy and Truong focus exclusively 
on intersections for the visually impaired while we examine 
sidewalks for people with mobility impairments. More 
importantly, we ask turkers to mark perceived accessibility 
problems (i.e, perform judgments of accessibility) while 
[14] asks turkers to “check-off” the existence of traffic 
objects (e.g., left turn signal, stop sign). Lastly, we ask 
turkers to directly label pixels, which helps establish an 
important initial baseline for collecting streetview 
accessibility training examples for computer vision. 

Crowdsourcing and Image Labeling 
Our image labeling task is analogous to that commonly 
performed in computer vision research for image 
segmentation, and object detection and recognition [6,26, 
28,35,1]. Since manually building a large dataset of 
annotated images for training computer vision algorithms is 
expensive and time consuming [26], a number of web-
based image labeling tools have been developed to 
capitalize on the large user population accessible over the 
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Internet (e.g., [1,2,26,28]). These tools differ in the level of 
information acquired about each image and their userbase.  
For example, in von Ahn et al.’s work, textual labels are 
provided for images through a clever collaborative game-
with-a-purpose, where users provide captions to describe 
objects in an image [1] or draw bounding boxes around 
specific items [2]. LabelMe [26] provides even more 
granular segmentation by allowing users to draw polygonal-
outlines around objects, which are publically viewable and 
editable. Finally, to our knowledge, Sorokin and Forsyth 
[28] were the first to experiment with “outsourcing” image 
labeling to Mechanical Turk. In a series of experiments, 
they showed that a large number of high quality image 
annotations could be acquired relatively cheaply and 
quickly. Others have successfully used Mechanical Turk for 
a variety of purposes including document editing [7], 
graphical perception experiments [16], and near real-time 
assistance with visual problems for blind people [8]. 

ANNOTATION INTERFACE AND DATASET 
To collect geo-labeled data on sidewalk accessibility 
problems in GSV images, we created an interactive online 
labeling tool in JavaScript, PHP and MySQL (Figure 2). 
We also created a verification interface (Figure 3) where 
users could accept or reject previously collected labels. 
Below, we describe the annotation interface and the 
primary dataset used in our studies. We return to the 
verification interface in the Study 2 section. 
For the annotation interface, labeling is a three-step process 
consisting of marking the location of the problem (if one 
exists), categorizing it into one of five types, and assessing 
its severity. For the first step, the user draws an outline 
around the perceived accessibility problem in the image 
(similar to LabelMe [26]). A pop-up menu then appears 
with five problem categories: Curb Ramp Missing, Object 
in Path, Surface Problem, Prematurely Ending Sidewalk, 
and Other. After a problem category has been selected, a 
five-point Likert scale appears, asking the user to rate the 
severity of the problem where 5 is most severe (“not 
passable”) and 1 is least severe (“passable”). The label is 
then complete. After all identified sidewalk problems have 
been labeled in a given image, the user can select “submit 
labels” and another image is loaded. Images with no 
apparent sidewalk problems can be marked as such with a 
button labeled “There are no accessibility problems in this 
image.” Users can also skip images and record their reason 

(e.g., “image too blurry”, “sidewalk not visible”). Other 
labeling techniques were explored in early prototypes [15]. 
The test dataset used in the labeling interface consists of 
229 images manually scraped by the research team using 
GSV of urban neighborhoods in Los Angeles, Baltimore, 
Washington DC, and New York City. We attempted to 
collect a balanced dataset. Of the 229 images, 179 
contained one or more of the aforementioned problem 
categories; 50 had no visible sidewalk accessibility issues 
and were used, in part, to evaluate false positive labeling 
activity. Based on our majority-vote ground truth data 
(described later), we determined the following composition: 
67 images with Surface Problems, 66 images with Object in 
Path, 50 with Prematurely Ending Sidewalk, and 47 with 
Curb Ramp Missing. This count is not mutually exclusive—
48 images in total included more than one problem type. 
The label Other was used 0.5% of the time in Study 1 and 
0.6% in Study 2 and is thus ignored in our analyses. As of 
September 2012, the average age of the images is 3.1 years 
old (SD=0.8 years). We return to the potential issue of 
image age in the discussion. 

EVALUATING ANNOTATION CORRECTNESS 
In this section, we provide an overview of the correctness 
measures used in our two studies. Because this is a new 
area of research, we introduce and explore a range of 
metrics—many of which have different levels of relevancy 
across application contexts (e.g., calculating the 
accessibility score of a neighborhood vs. collecting training 
data for a computer vision algorithm).  

Defining Levels of Annotation Correctness 
Assessing annotation correctness in images is complex. To 
guide our analysis, we derived two spectra that vary 
according to the type and granularity of data extracted from 
each label: the localization spectrum and the specificity 
spectrum. The localization spectrum describes the 
positioning of the label in the image, which includes two 
discrete levels of granularity: image level and pixel level. 
For image level, we simply check for the absence or 
presence of a label anywhere within the image. Pixel level 
is more precise, examining individual pixels highlighted by 
the label outline. Our pixel-level analysis is analogous to 
image segmentation in computer vision and, indeed, our 
evaluation methods are informed from work in this space. 
The specificity spectrum, in contrast, varies based on the 
amount of descriptive information evaluated for each label. 

   
Figure 2: Labeling GSV images is a three step process consisting of marking the location of the sidewalk problem in the image, categorizing the 
problem into one of five types, and assessing the problem’s severity. Here, the utility pole is labeled Object in Path and rated 5 (Not Passable). 
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At the finest level of granularity, we check for matches 
based on the five label categories as well as corresponding 
severity ratings: Object in Path, Prematurely Ending 
Sidewalk, Surface Problem, Curb Ramp Missing, and No 
Problem (indicating the user had clicked “no accessibility 
problems found”). Note that Curb Ramp Missing and No 
Problem were exempt from severity ratings. At the next 
level of granularity, we only examine problem types, 
ignoring severity ratings; we refer to this level as 
multiclass. Finally, at the coarsest level of granularity we 
group all problem categories into a binary classification of 
problem vs. no problem.  
As the first work in the area, these dimensions of analysis 
are important for understanding crowd worker performance 
across various measures of correctness. Identifying an 
appropriate level of correctness may depend on the specific 
application context. For example, because of the focal 
length and camera angles used in GSV imagery, simply 
identifying that an accessibility problem exists in an image 
(i.e., image-level, binary classification) localizes that 
problem to a fairly small geographic area: a specific street 
side and sidewalk within a city block. This level of 
geographic precision may be sufficient for calculating 
accessibility scores or even informing accessibility-aware 
routing algorithms. Binary classification—whether at the 
image level or the pixel level—also helps mitigate the 
subjectivity involved in selecting a label type for a problem 
(e.g., some persons may perceive a problem as Object in 
Path while others may see it as a Surface Problem). In other 
cases, however, more specific correctness measures may be 
needed. Training computer vision algorithms to segment 
and, perhaps, automatically identify and recognize 
obstacles, would require pixel-level, multiclass granularity. 

Image-Level Correctness Measures 
For image-level analysis, we computed two different 
correctness measures: a straightforward accuracy measure 
and a more sophisticated measure involving precision and 
recall. For accuracy, we compare ground truth labels with 
turker labels for a given image and calculate the percentage 
correct. For example, if ground truth labels indicate that 
three problem types exist in an image: No Curb Ramp, 
Object in Path, and a Surface Problem, but a turker only 
labels No Curb Ramp, then the resulting accuracy score 
would be 50% (1 out of 3 problems identified correctly and 
1 correct for not providing Sidewalk Ending). Though easy 

to understand, this accuracy measure does not uncover 
more nuanced information about why an accuracy score is 
obtained (e.g., because of false positives or false negatives).  
As a result, we incorporated a second set of correctness 
measures, which extend from work in information retrieval: 
precision, recall, and an amalgamation of the two, f-
measure. All three measures return a value between 0 and 
1, where 1 is better:  

          
                     

                                            
           (Eq. 1) 

        
                    

                                             
               (Eq. 2) 

F-measure     
                

                
                (Eq. 3) 

True positive here is defined as providing the correct label 
on an image, false positive is providing a label for a 
problem that does not actually exist in the image, and false 
negative is not providing a label for a problem that does 
exist in the image. In this way, precision measures the 
accuracy of the labels actually provided (i.e., a fraction 
expressing the ratio of correct labels over all labels 
provided) while recall measures the comprehensiveness of 
the correct labels provided (i.e., a fraction expressing the 
ratio of correct labels over all possible correct labels). For 
example, a precision score of 1.0 means that every label the 
turker added was correct but they could have missed labels. 
A recall score of 1.0 means that the turker’s labels include 
all of the actual problems in the image but could also 
include non-problems. Given that algorithms can be tuned 
to maximize precision while sacrificing recall and vice 
versa, the f-measure provides a single joint metric that 
encapsulates both. We use accuracy, precision, recall, and f-
measure to describe our image level results. 
Pixel-Level Correctness Measures 
Pixel-level correctness relates to image segmentation work 
in computer vision. Zhang [1] provides a review of methods 
for evaluating image segmentation quality, two of which 
are relevant here: the goodness method, which examines 
segmentation based on human judgment and the empirical 
discrepancy method, which programmatically calculates the 
difference between test segmentations and “ground truth” 
segmentations for a given image. The goodness method can 
be advantageous in that it does not require ground truth; 
however, it is labor intensive because it relies on human 
judgment to perceive quality. Though judging the quality of 

   
Figure 3: The verification interface used to experiment with crowdsourcing validation of turker labels—only one label is validated at a time in 
batches of 20. (a) A correctly labeled No Curb Ramp problem; (b) A false positive Object in Path label (the utility pole is located in the grass and not 
in the sidewalk); (c) A false negative example: The cars should have been marked as Object in Path. 
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segmentations can also be crowdsourced, partly mitigating 
the labor concern (e.g., [7]), the quality of the judgment 
itself remains an issue. 
Thus, we also explored two empirical discrepancy methods: 
overlap (or area of intersection) [2,31] and, again, 
precision/recall combined with f-measure [9,10], which is 
similar to that explained above though applied at the pixel 
level rather than the image level. For our first discrepancy 
method, overlap is defined as: 

             
           

           
      (Eq. 4) 

where A and B are the pixel outlines. Note that if the outline 
A is perfectly equal to the outline B, then Overlap(A,B)=1. 
If A and B are disjoint, then Overlap(A,B)=0. Although this 
metric is easy to understand, similar to the straightforward 
accuracy measure for image-level analysis, it fails to 
capture nuances in correctness. Thus, for our second 
discrepancy metric we define precision, recall, and f-
measure at the pixel level. From the image segmentation 
literature [6], precision is defined as the probability that a 
generated outline-fill pixel area correctly highlights the 
target object and recall is the probability that a true outline-
fill pixel is detected. Thus, in order to calculate precision 
and recall at the pixel level, we need to compute three 
different pixel counts for each image:  

1. True positive pixels: number of overlapping pixels between 
the ground truth segmentation and the test segmentation; 

2. False positive pixels: number of pixels in the test 
segmentation not in the ground truth segmentation; 

3. False negative pixels: number of pixels in the ground truth 
segmentation not in the test segmentation. 

Precision and recall can then be computed by the following 
formulae (f-measure is the same as Eq. 3 above): 

          
                     

                                            
           (Eq. 5) 

        
                    

                                             
               (Eq. 6) 

Before calculating pixel-level correctness for any of the 
measures, we flatten all labels with equivalent type into the 
same layer and treat them as a single set of pixels. This 
allows us to more easily perform pixel-by-pixel comparison 
between ground truth labels and test labels marked with the 
same problem type. 

STUDY 1: ASSESSING FEASIBILITY 
Labeling accessibility problems perceived in streetscape 
images is a subjective process. As such, our first study 
focused on demonstrating that informed and well-motivated 
labelers could complete the labeling task and produce 
consistent results. We had two additional goals: (i) to 
produce a vetted ground truth dataset that could be used to 
calculate turker performance in Study 2, and (ii) to help 
contextualize Study 2 results (i.e., what does “good” 
performance look like?). 
We collected independently-labeled data from two groups: 
three members of our research team and three wheelchair 
users (who served as “sidewalk accessibility experts”). We 

then computed intra- and inter-annotator agreement scores 
for within and between each group respectively. We 
explore agreement at both the image level and the pixel 
level across binary and multiclass classification. 

Collecting Wheelchair User Ground Truth Data 
Three wheelchair users were recruited via listservs and 
word-of-mouth: two males with spinal cord injury 
(tetraplegia) and one male with cerebral palsy. All three 
used motorized wheelchairs; one also used a manual 
wheelchair but rarely. Each wheelchair user took part in a 
single labeling session at our research lab. Participants were 
asked to label the images based on their own experiences 
and were instructed that not all images contained 
accessibility problems. They were also asked to “think-
aloud” during labeling so that we could better understand 
the rationale behind their labeling decisions.  
The sessions lasted for 2-3 hours and included a short, post-
labeling interview where we asked about the participant’s 
personal experiences with sidewalk/street accessibility and 
about potential improvements to our labeling tool. In 
consideration of participant time and potential fatigue, only 
a subset of the total 229 image dataset was labeled: 75 in 
total. These images were selected randomly from each of 
the four problem categories (4 categories x 15 images = 60) 
plus an additional 15 randomly selected “no problem” 
images. Participants were compensated $25-35 depending 
on session length. Below, we report on evaluating 
agreement between the researchers, the wheelchair users, 
and the researchers compared to the wheelchair users. For 
the latter calculation, we compare majority vote data from 
each group so N=2 rather than N=6. We describe both 
image-level and pixel-level performance. 

Evaluating Image-Level Agreement and Performance 
We computed inter-rater agreement on labels at the image 
level using Fleiss’ kappa [18], which attempts to account 
for agreement expected by chance. As this was an image-
level analysis, we tested for agreement based on the 
absence or presence of a label in an image and not on the 
label’s particular pixel location or severity rating. Multiple 
labels of the same type were compressed into a single 
“binary presence” indicator for that label. For example, if 
three individual Surface Problems were labeled in an 
image, for our analysis, we only considered the fact that a 
Surface Problem was detected and not how many 
occurrences there were exactly. This helped control for 
different annotator tendencies—some who would provide 
one large label to cover contiguous problem areas and 
others who would provide separate labels. Results are 
shown in Table 1 for both binary and multiclass 
classification (N represents the number of annotators and I 
the number of images, Table 2 uses the same notation).  
Three key results emerge: first, both the researchers and the 
wheelchair users had moderate to substantial levels of 
agreement [18], which indicates that the labeling task, at 
least at the image-level, is feasible and that the labels are 
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fairly consistent across labelers; second, and just as 
importantly, the third column in Table 1 shows high 
agreement between the majority vote data of the research 
team and the wheelchair users, which indicates that the 
accessibility problems identified by the research team are 
consistent with “experts”; and, finally, the multiclass 
agreement results show that Object in Path and Surface 
Problem have more disagreement than No Curb Ramp and 
Sidewalk Ending. This is likely because Object in Path and 
Surface Problems are often less salient in images and 
because they are occasionally substituted for one another 
(e.g., some labelers perceive a problem as Object in Path 
while others as a Surface Problem). 

Evaluating Pixel-Level Agreement and Performance 
Calculating pixel-level agreement is more challenging. 
Because no widespread standards exist for evaluating pixel-
level agreement for human labelers, we followed the 
process prescribed by Martin et al. [23]. We verify the 
labeling process by showing that pixel-level label overlap 
and f-measure scores are higher between labelers on the 
same image than across different images. These scores will 
later act as a baseline for defining good pixel-level 
performance when evaluating turker labels. To compare 
between the same images, 678 comparisons are required (3 
annotators x 229 images). For different images, 156,636 
comparisons are required (3 annotators x (229 x 229 – 
229)). Because the wheelchair users only labeled 75 of the 
229 images, their comparison count is correspondingly 
lower (225 for same, 16,650 for different). We ignore 
images for which all annotators labeled No Problems Found 
(as no pixel labels exist in these images). Our results are 
shown in Table 2. 
From these results, we conclude that our pixel level 
annotations across labelers are reasonably consistent, 
although less so than for image level. Unsurprisingly, 
agreement is higher for binary classification than for 
multiclass, though not substantially. This indicates that a 
major source of disagreement is not the label type (e.g., 
Object in Path vs. Surface Problem) but rather the pixels 
highlighted by the outline shape. We emphasize, however, 
that pixel outlines for even the same object across labelers 
will rarely agree perfectly; the key then, is to determine 
what level of overlap and f-measure scores are acceptable 
and good. Our results suggest that overlap scores of 0.31 

and 0.27 and f-measure scores of 0.43 and 0.38 for binary 
and multiclass classification respectively are indicative of 
what a motivated and diligent annotator can achieve. We 
emphasize that even 10-15% overlap agreement at the pixel 
level would be sufficient to confidently localize problems in 
images and highlight these areas in accessible map routing 
interfaces. This level of consistency, however, may not be 
sufficient for training computer vision. We return to this 
point in the discussion. 

PRODUCING GROUND TRUTH DATASETS 
Finally, now that we have shown the feasibility of the 
labeling task and found reasonably high consistency 
amongst labelers, we can use these Study 1 labels to 
produce a ground truth dataset for evaluating turker 
performance. We consolidate the labeling data from the 
three researchers into four unified ground truth datasets: 
binary and multiclass at both the image and the pixel level 
Consolidating Image-Level Labels: To combine image-
level labels across the three labelers, we simply create a 
majority-vote “ground truth” dataset. Any image that 
received a label from at least two of the three researchers 
was assigned that label as “ground truth.”  
Consolidating Pixel-Level Labels: Combining labels from 
the three researchers at the pixel level is less 
straightforward. The consolidation algorithm will directly 
impact the results obtained from our correctness measures. 
For example, if we combine highlighted pixel areas across 
all three researchers (union), then turker precision is likely 
to go up but recall is likely to go down. If, instead, we take 
the intersection across all three labelers, the ground truth 
pixel area will shrink substantially, which will likely 
increase turker recall but reduce precision. Consequently, 
we decided to, again, adopt a majority vote approach. To 
produce the majority vote pixel-level dataset, we look for 
labels from at least two of the three researchers that overlap 
by 15% of their unioned area. The value of 15% was chosen 
because it is the lower-quartile cutoff using researcher 
overlap data. For binary classification, the label type was 
ignored—thus, any labels that overlapped by 15% or more 
were combined. For multiclass, the labels had to be of the 
same type.  

Image-Level 
Label 

Specificity 
Label 

Researchers 
(N=3, I=229) 

Wheelchair  
Users 

(N=3, I=75) 

Researchers vs. 
Wheelchair Users 

(N=2 groups, I=75) 

Binary  
Classification 

No Problem vs. 
Problem 

0.81 0.68 0.79 

Multiclass 
Classification 

No Curb Ramp 0.81 0.82 0.83 

Object in Path 0.56 0.55 0.62 

Sidewalk Ending 0.86 0.71 0.78 

Surface Problem 0.62 0.40 0.74 

Overall 0.69 0.62 0.74 

Table 1: Fleiss’ kappa annotator agreement scores for image-level 
analysis between the researchers, the wheelchair users, and the 
researchers compared to the wheelchair users (this lattermost 
comparison is based on majority vote data within each group).  

Pixel-Level 
Label 

Specificity 

Correctness 
Measure 

Image 
Comparisons 

Researchers 
(N=3, I=229) 

Wheelchair  
Users 

(N=3, I=75) 

Researchers vs. 
Wheelchair Users 

(N=2 groups, I=75) 

Binary  
Classification 

Area  
Overlap 

Same  0.31 (0.21) 0.26 (0.22) 0.27 (0.21) 

Different 0.02 (0.05) 0.01 (0.04) 0.01 (0.04) 

F-Measure 
Same  0.43 (0.25) 0.37 (0.26) 0.38 (0.26) 

Different 0.03 (0.08) 0.02 (0.06) 0.03 (0.07) 

Multiclass 
Classification 

Area  
Overlap 

Same  0.27 (0.21) 0.22 (0.22) 0.23 (0.21) 

Different 0.01 (0.03) 0.00 (0.02) 0.00 (0.02) 

F-Measure 
Same  0.38 (0.26) 0.32 (0.27) 0.33 (0.27) 

Different 0.01 (0.05) 0.01 (0.04) 0.01 (0.04) 

Table 2: The results of our pixel level agreement analysis (based on 
[23]) between the researchers, wheelchair users, and researchers 
compared to wheelchair users. Similar to Table 1, the rightmost 
column is majority vote data. Cell format: average (stdev). 
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STUDY 2: CROWD WORKER PERFORMANCE 
To investigate the potential of using untrained crowd 
workers to label accessibility problems, we posted our task 
to Mechanical Turk during the summer of 2012. Each “hit” 
required labeling 1-10 images for 1-5 cents (0.5 to 5 cents 
per image). Each turker new to the task was required to 
watch at least half of a 3-minute instructional video, after 
which the labeling interface automatically appeared. Note: 
one task encompasses labeling one image. 
We first describe high-level results before performing a 
more detailed analysis covering labeler count vs. accuracy, 
two quality control evaluations, and the best and worst 
performing images. For the analysis below, we do not 
consider severity ratings. Instead, we leave this for future 
work. However, given that we found a high rate of false 
positives amongst the turker data, we did examine the effect 
of removing labels that received a severity rating of a 1 
(Passable) or a 2 (Fairly Passable). Our findings did not 
change significantly as a result.  

High-Level Results 
In all, we hired 185 distinct turkers who completed 7,517 
image labeling tasks and provided a total of 13,379 labels. 
Turkers completed an average of 40.6 tasks (SD=61.2); 20 
turkers labeled only 1 image and 10 turkers labeled all 229. 
The median image labeling time was 33.3s (SD=89.0s) and 
the average number of labels per image was 1.79 
(SD=1.27). When compared with our ground truth dataset, 
overall turker accuracy at the image level was 80.6% for 
binary classification and 78.3% for multiclass classification. 
At the pixel level, average area overlap was 20.6% and 
17.0% for binary and multiclass, respectively. These 
numbers are reasonably close to the values of 27% and 23% 
that we saw for wheelchair users vs. researchers. 

Accuracy as a Function of Turkers per Image 
Collecting multiple annotations per image helps account for 
the natural variability of human performance and reduces 
the influence of occasional errors; however, it also requires 
more workers [28]. Here, we explore accuracy as a function 
of turkers per image. We expect that accuracy should 
improve as the number of turkers increases, but the question 
then, is by how much? To evaluate the impact of the 
number of turkers on accuracy, we collected labels from 28 
or more turkers for each of our 229 images. We compare 
our majority vote ground truth data with majority vote data 

across five turker group sizes: 1, 3, 5, 7, and 9. Because we 
have 28 turkers per image, we can run the analysis multiple 
times for each group size, average the results, and calculate 
error margins (which produces a more accurate portral of 
expected future performance for each group size). For 
example, when we set the majority vote group size to three, 
we randomly permute nine groups of three turkers. In each 
group, we calculate the majority vote answer for a given 
image in the dataset and compare it with ground truth. This 
process is repeated across all images and the five group 
sizes, where (X=majority vote group size, Y=number of 
groups): (1,28), (3, 9), (5,5), (7, 4), (9, 3). To compute the 
majority vote answer for each group size, we use the same 
label consolidation process as that used for the researcher 
majority vote labels. 
We conducted this analysis at the image and pixel levels for 
binary and multiclass classification across our multiple 
correctness measures. Results are shown in Figure 4 (image 
and pixel level) and Table 3 (image level only). As 
expected, performance improves with turker count but these 
gains diminish in magnitude as group size grows. For 
example, at the image level, binary accuracy improves from 
80.6% to 86.9% with 3 turkers and to 89.7% with 5 turkers 
but only to 90.2% with 9 turkers. For image-level 
multiclass, we see a similar trend. At the pixel level, the 
binary area overlap measure improves from 20.6% to 
30.3% with 5 turkers but only to 31.4% with 9 turkers. 
Again, multiclass performance is similar (see Figure 4d). 
Even though group sizes beyond 5 continue to improve 
results at both the image and pixel level, this benefit may 
not be worth the additional cost.  
Note that for the pixel level, the recall score rises 
dramatically in comparison to other metrics. This is because 
the consolidated majority vote pixel area tends to grow with 
turker count (with more pixels labeled, recall will go up). 

 
Figure 4: Binary and multiclass performance at the image- and pixel-levels with varying majority vote group sizes. Each graph point is based on 
multiple permutations of the majority vote group size across all 229 images. Standard error bars are in black (barely visible due to low variance). 
 

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9

Tu
rk

er
 P

er
fo

rm
an

ce
 

Majority Vote Group Size 

Precision
Recall
F-measure
Accuracy

(a) Image-Level Binary 

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9

Majority Vote Group Size 

(b) Image-Level Multiclass 

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9

Majority Vote Group Size 

(c) Pixel-Level Binary 

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9

Majority Vote Group Size 

(d) Pixel-Level Multiclass 

Image-
Level Label 
Specificity 

Label 
Maj Vote 

Size: 1 
Maj Vote 

Size: 3 
Maj Vote 

Size: 5 
Maj Vote 

Size: 7 
Maj Vote 

Size: 9 

Binary  No Prob vs. Prob 80.6 (0.1) 86.9 (0.3) 89.7 (0.2) 90.6 (0.2) 90.2 (0.2) 

Multiclass 

No Curb Ramp 78.6 (0.1) 86.0 (0.1) 90.2 (0.3) 91.6 (0.2) 93.7 (0.3) 

Object in Path 73.0 (0.1) 78.1 (0.2)  81.3 (0.3) 82.2 (0.1) 83.4 (0.2) 

Sidewalk Ending 84.7 (0.1) 88.3 (0.1) 88.5 (0.4) 89.5 (0.4) 89.8 (0.3) 

Surface Problem 77.0 (0.1) 82.1 (0.2) 84.9 (0.3) 85.9 (0.4) 88.4 (0.3) 

Overall 78.3 (0.0) 83.8 (0.1) 86.8 (0.2) 86.6 (0.2) 87.9 (0.1) 

Table 3: Binary and multiclass label type accuracy at the image level 
across five majority vote group sizes. Cell format: avg% (stderr %). 
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Different consolidation processes will produce different 
results. Finally, similar to Study 1, Sidewalk Ending and No 
Curb Ramp labels performed better than Object in Path and 
Surface Problem (Table 3).  

Quality Control Mechanisms 
We explore two quality control approaches: filtering turkers 
based on a fixed threshold of acceptable performance and 
filtering labels based on crowdsourced validations collected 
through our verification interface. In both cases, we 
perform our analyses offline, which allows us to simulate 
performance with a range of quality control mechanisms.  
Statistical Filtering: For the first approach, we explored the 
effect of eliminating turkers based on their average 
multiclass performance at both the image and pixel level. 
The goal was to uncover effective performance thresholds 
for eliminating poor quality turkers. We assign measure of 
errors to image-level and pixel-level correctness by using a 
Monte Carlo-based resampling approach called Bootstrap 
[13]. We first eliminate all turkers from our dataset who 
had completed fewer than five tasks. We then take samples 
of the remaining 142 turkers with replacement. For each 
sampled turker we randomly select five tasks that s/he 
completed to measure their average multiclass accuracy (for 
image level) or multiclass overlap (for pixel level). We shift 
our elimination threshold by increments of 0.01 and reject 
turkers if their average performance is lower than this 
threshold. At each increment, we also calculate overall 
performance across all tasks among the remaining turkers. 
We repeat this process independently at the image and pixel 
levels N=1000 times to calculate error bars.   
Results are shown in Figure 5 (a and b). In both figures, we 
see overall performance steadily increase as poor 
performing turkers get eliminated. However, the threshold 
where elimination takes effect differs between the two 
mechanisms due to differences in difficulty. For example, 
to achieve the same accuracy level as we would expect 
from majority vote with 3 turkers (0.84), the average 
performance elimination threshold needs to be 0.76 
(marked in orange in the graph). At that threshold, image-
level multiclass accuracy amongst the remaining turkers 
goes up to 0.84, but at a cost of eliminating 51.2% of our 
workforce. For pixel-level data, to achieve a score similar 

to the average area overlap between researcher labels (0.27), 
the elimination threshold needs to be set to 0.08, which 
increases the overlap score from 0.24 to 0.27 but reduces 
our workforce by 15% (again, orange line in graph). Thus, 
as expected, our results show accuracy gains with 
increasingly aggressive elimination thresholds; however, 
these accuracy gains come at a cost of reducing the 
effective worker pool. We expect that future systems can 
use these results to identify poor performing turkers 
proactively during data collection via ground truth seed 
images (e.g., see [22]), and either offer additional training, 
or, in the extreme case, rejecting the work outright and 
blacklisting the turker. The threshold used depends on the 
accuracy needs of the application. 
The Verification Interface: For the second quality control 
approach, we use our verification interface (Figure 3) to 
subjectively validate labels via crowdsourcing. Here, 
turkers validate existing labels rather than provide new 
ones. We ensured that the same turker did not label and 
validate the same image. As the validation task is simpler 
than the labeling task, we batched 20 validations into a 
single hit at a cost of 5 cents. We collected three or more 
validations per label across 75 images (the same subset 
used by the wheelchair users in Study 1). In all, we 
collected 19,189 validations from 273 turkers. Whereas the 
median time to label an image was 35.2s, the median time 
to validate a label was 10.5s. Thus, collecting validations is 
quicker and cheaper than collecting new labels. 
We performed a series of analyses with the validation data, 
using both majority vote validation and zero tolerance 
validation. For the latter, if any validator down-votes a 
label, that label is eliminated. We compare these results to 
no quality control (baseline), the use of majority vote 
labels, and a combination of majority vote labels plus 
subjective validation. Results are in Figure 5. As before, 
performance improves with additional turkers—either as 
labelers or as validators. The best performing quality 
control mechanism was 3 labelers (majority vote) plus 3 
validators (zero tolerance) beating out 5 labelers (majority 
vote). This suggests that it is more cost effective to collect 3 
labels with validation than 5 labels total per image, 
particularly given that validation requires less effort. 

 (a) Eliminating Turkers: Image-Level Accuracy  (b) Eliminating Turkers: Pixel-Level Overlap  (c) Comparing Quality Control Mechanisms: Majority Vote + Validation  

   
Figure 5: (a and b) Show the effect of increasingly aggressive turker elimination thresholds at the image- and pixel-levels based on average 
multiclass performance of 5 images. Error bars are standard deviation (for blue) and standard error (for red). As the threshold increases, fewer 
turkers remain and uncertainty increases. (c) Compares the effectiveness of various quality control mechanisms on performance at the image level.  
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Best and Worst Performing Images 
Finally, to uncover what aspects of an image make it 
particularly easy or difficult to label, we sorted and visually 
inspected images in our dataset by multiclass pixel-level 
area overlap performance. Figure 6 shows a selection of the 
bottom and top performing images (left 3, right 3). For the 
worst performing images, there are many false positives: 
for example, utility poles and stop signs labeled as obstacles 
even though they are not in the sidewalk path. Figure 6c 
highlights two additional common problems: first, problem 
types can have ambiguous categories—in this case, the 
ground truth label indicates Sidewalk Ending while many 
turker labels selected Surface Problem; second, it is unclear 
how much of the problem area should be highlighted. For 
Sidewalk Ending, the ground truth labels highlight only the 
sidewalk termination point—some turkers, however, would 
label this section and any beyond it with no sidewalk 
(thereby greatly reducing their pixel-level scores). Future 
interfaces could detect these mistakes and provide active 
feedback to the turker on how to improve their labeling. In 
contrast, for the best performing images, the accessibility 
problems are, unsurprisingly, more salient and the camera 
angle provides a relatively close-angle shot.  

DISCUSSION AND CONCLUSION 
We have shown that untrained crowdworkers could find 
and label accessibility problems in GSV imagery. We also 
highlighted the effect of common quality-control techniques 
on performance accuracy. Here, we discuss limitations of 
our study and opportunities for future work.  
Our prototype labeling system relied on a manually curated 
database of images selected by the research team. This 
approach was sufficient to demonstrate the feasibility of our 
idea but ignored important practical aspects such as locating 
the GSV camera in geographic space and selecting an 
optimal viewpoint. These challenges clearly need to be 
solved to produce a scalable approach. We are currently 
working on multiple solutions including: (i) a software 
agent that virtually “drives” through city streets in GSV and 
attempts to snapshot optimal angles of sidewalks and street 
intersections and (ii) deferring this complexity to the crowd 

worker by allowing them to control camera angle and zoom 
level in an updated labeling interface. 
An additional limitation relates to the GSV images 
themselves. Image quality can sometimes be poor due to 
lighting conditions, which can often be auto-corrected, or 
blurriness. More work is also needed to assess the degree to 
which sidewalk occlusion (e.g., parked cars) is an issue in 
GSV images across different regions. Finally, GSV image 
age is also a potential problem (recall that images were 3.1 
years old on average in our dataset). The following factors 
should mitigate this lattermost issue: (i) as noted earlier, 
virtual GSV neighborhood audits and physical audits have 
resulted in high concordance for pedestrian infrastructure 
data [5,11,25]; (ii) GSV is already being treated as a 
valuable resource by the accessibility community—e.g., 
one of our mobility-impaired participants mentioned that he 
uses GSV to examine an area for traversability before 
leaving his house; (iii) GSV imagery is often updated as the 
GSV technology improves or simply to ensure accuracy 
e.g., Google updated 250,000 miles of roads in early Oct 
2012 (http://goo.gl/hMnM1). Moreover, all of the above 
GSV limitations may be potentially resolved through other 
data sources such as high-resolution top-down satellite or 
fly-over imagery [30], volunteer-contributed geo-located 
pictures (e.g., SeeClickFix), or government 311 databases. 
While we captured important accessibility characteristics of 
sidewalks, other problems may exist. For example, the 
wheelchair users in Study 1 indicated that sidewalk 
narrowness can also reduce accessibility. We did not have a 
means of measuring sidewalk width or assess narrowness. 
Future work should look at the ability to calculate widths 
(e.g., via computer vision-based mensuration), which could, 
perhaps, be reconstructed via the multiple camera angles 
offered by GSV or derived from the 3D-point cloud data 
that modern GSV cars collect (see [4]). While this 3D data 
is not yet publicly available, it could also be useful in object 
detection for automatically identifying problems. 
We intend to integrate computer vision (CV) into our 
approach primarily for image triage, view selection, 

      

      

      
(a) 0.80, 0.59; 0.20, 0.0 (b) 0.81, 0.70; 0.0 , 0.0 (c) 0.86, 0.59; 0.15, 0.0 (d) 0.74, 0.89; 0.52, 0.52 (e) 0.97, 0.79; 0.58, 0.55 (f) 0.94, 0.96; 0.63, 0.61 

Figure 6: A selection of the bottom and top three performing images in our dataset based on multiclass pixel-level area overlap. Top row: original 
GSV image; middle row: majority vote ground truth from researchers using 15% overlap; bottom row: turker labels. Numbers show turker 
performance results for that image, from left to right: image-level binary, image-level multiclass; pixel-level binary, pixel-level multiclass.  
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mensuration, and semi-automatic object detection. Doing so 
will allow for further scalability, for example, where turkers 
verify automatically generated labels. However, while our 
current pixel-level results should be useful for localizing 
where problems exist in images, they may not be sufficient 
for training CV algorithms. To capture higher quality 
training data for CV, a future labeling tool should provide 
finer granularity outlines, feedback to turkers about their 
performance, proactive quality control, and better training.  
For quality control, future applications will be using images 
where ground truth is unknown. Instead, “ground truth” 
seed images will need to be injected into the labeling 
dataset to actively measure turker performance (see [22]). 
Active monitoring will allow turkers to receive 
performance feedback, help assist them when they make 
common mistakes, and warn and, eventually, eliminate poor 
quality workers if they do not improve. Beyond turkers, we 
also plan to build a volunteer-based participatory website to 
both visualize our results and highlight areas that need data 
collection. In contrast to our current interface, we could 
allow for collaborative editing (e.g., [26]) and experiment 
with incentivizing volunteers (e.g., through gamification). 
Our general approach of collecting useful, street-level 
information in a scalable manner from GSV images has 
application beyond sidewalks. We would like to expand our 
approach to assess the accessibility of building fronts, 
friction strips and stop lights at intersections (similar to [14] 
but with pixel-based labeling), and non-accessibility related 
topics such as tracking and labeling bike lanes in roadways.  
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