277 research outputs found

    T cell receptor alpha-chain gene rearrangements in B-precursor leukemia are in contrast to the findings in T cell acute lymphoblastic leukemia. Comparative study of T cell receptor gene rearrangement in childhood leukemia.

    Get PDF
    We have analyzed T cell receptor alpha-chain gene configuration using three genomic joining (J) region probes in 64 children with acute lymphoblastic leukemia (ALL). 11 out of 18 T-ALLs were T3 positive; alpha-chain gene rearrangements were demonstrated in only two of 18, indicating that the majority of T-ALLs would have rearrangements involving J alpha segments located upstream of these probes. In contrast, 15 out of 46 B-precursor ALLs showed rearrangements of the alpha-chain gene and J alpha segments located approximately 20-30 kb upstream of the constant region were involved in 13 of these patients. Nine of 15 B-precursor ALLs with rearranged alpha-chain genes had rearrangements of both gamma- and beta-chain genes, whereas the remaining six had no rearrangements of gamma- and beta-chain genes. These findings indicated that alpha-chain gene rearrangement is not specific for T lineage cells and gamma- and/or beta-chain gene rearrangement does not appear essential for alpha-chain gene rearrangement, at least in B-precursor leukemic cells

    Rearrangement of Variable Region T Cell Receptor y Genes in Acute Lymphoblastic Leukemia Vy Gene Usage Differs in Mature and Immature T Cells

    Get PDF
    Using probes recognizing variable regions (V gamma) and joining regions (J gamma) of the T cell receptor (TCR) gamma gene, we have analyzed the usage of V gamma genes in 24 patients with T cell acute lymphoblastic leukemia (ALL) and 36 patients with B-precursor ALL. In CD3- T-ALL derived from immature T cells, V gamma genes more proximal to J gamma were frequently rearranged; V gamma 8, V gamma 9, V gamma 10, and V gamma 11 were used in 19 of 24 rearrangements. In contrast, CD3+ T-ALL derived from a more mature stage of T cell ontogeny, showed a high frequency of rearrangements involving V gamma genes distal to J gamma; V gamma 2, V gamma 3, V gamma 4, and V gamma 5 were used in 17 of 25 rearrangements. In B-precursor ALL, no notable bias of V gamma gene usage was observed. This probably reflects the possibility that TCR genes may not rearrange according to a T cell hierarchy when under control of a B cell gene program. Furthermore, deletions of those V gamma genes located 3' to rearranged V gamma genes were observed in all patients analyzed. This supports the theory that loop deletion is a major mechanism for TCR-gamma gene rearrangement

    Tissue-Tissue Interaction-Triggered Calcium Elevation Is Required for Cell Polarization during Xenopus Gastrulation

    Get PDF
    The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium

    New Surgical Procedure for Pancreas Head

    Get PDF
    In this study, we demonstrate two new methods for pancreaticoduodenectomy (PD). One method is the mini‐laparotomic PD by Shuriken‐shaped umbilicoplasty with the real‐time moving window‘s method. The other method is the new pancreaticojejunostomy (PJ) by punctured stent slide guiding method (PSSGM). This procedure could be performed by complete mini‐laparotomy under direct vision, and the final major wound is only 2 cm of round navel. PSSGM prevents the difference of caliber between pancreatic anastomosis and the inside out of jejunal mucosa in theory. Ten cases of mini‐lap PD were successfully performed under new PJ anastomosis. The pancreatic leakage (PL) was only one case of ISGPF grade A, and its frequency was 9% (1/11). Our mini‐lap PD by Shuriken‐shaped umbilicoplasty might be a useful way for overcoming the obstacles about safety, complication risk, cosmetic demand, and medical cost compared to laparoscopic PD. Also, our new device of PJ reconstruction by PSSGM might be an easy and useful device for the prevention of PL

    Oncogenic FGFR1 mutation and amplification in common cellular origin in a composite tumor with neuroblastoma and pheochromocytoma

    Get PDF
    Neuroblastoma (NB) and pheochromocytoma (PCC) are derived from neural crest cells (NCCs); however, composite tumors with NB and PCC are rare, and their underlying molecular mechanisms remain unknown. To address this issue, we performed exome and transcriptome sequencing with formalin-fixed paraffin-embedded (FFPE) samples from the NB, PCC, and mixed lesions in a patient with a composite tumor. Whole-exome sequencing revealed that most mutations (80%) were shared by all samples, indicating that NB and PCC evolved from the same clone. Notably, all samples harbored both mutation and focal amplification in the FGFR1 oncogene, resulting in an extraordinarily high expression, likely to be the main driver of this tumor. Transcriptome sequencing revealed undifferentiated expression profiles for the NB lesions. Considering that a metastatic lesion was also composite, most likely, the primitive founding lesions should differentiate into both NB and PCC. This is the first reported case with composite-NB and PCC genetically proven to harbor an oncogenic FGFR1 alteration of a common cellular origin

    In Vitro Assessment of Factors Affecting the Apparent Diffusion Coefficient of Jurkat Cells Using Bio-phantoms

    Get PDF
    It is well known that many tumor tissues show lower apparent diffusion coefficient (ADC) values, and that several factors are involved in the reduction of ADC values. The aim of this study was to clarify how much each factor contributes to decreases in ADC values. We investigate the roles of cell density, extracellular space, intracellular factors, apoptosis and necrosis in ADC values using bio-phantoms. The ADC values of bio-phantoms, in which Jurkat cells were encapsulated by gellan gum, were measured by a 1.5-Tesla magnetic resonance imaging device with constant diffusion time of 30sec. Heating at 42℃ was used to induce apoptosis while heating at 48℃ was used to induce necrosis. Cell death after heating was evaluated by flow cytometric analysis and electron microscopy. The ADC values of bio-phantoms including non-heated cells decreased linearly with increases in cell density, and showed a steep decline when the distance between cells became less than 3μm. The analysis of ADC values of cells after destruction of cellular structures by sonication suggested that approximately two-thirds of the ADC values of cells originate from their cellular structures. The ADC values of bio-phantoms including necrotic cells increased while those including apoptotic cells decreased. This study quantitatively clarified the role of the cellular factors and the extracellular space in determining the ADC values produced by tumor cells. The intermediate diffusion time of 30msec might be optimal to distinguish between apoptosis and necrosis

    In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma

    Get PDF
    Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.Taniguchi S., Matsui T., Kimura K., et al. In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma. Nature Communications 14, 143 (2023); https://doi.org/10.1038/s41467-022-35701-8
    corecore