118 research outputs found

    Molecular Cloning and Expression of Bacterial Mercuric Reductase Gene

    Get PDF
    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon was localized by transforming isolated E. coli plasmid into mercury sensitive (Hgs) host E. coli DH5a cells. Oligonucleotide primers were designed by comparing the knownreported sequences of merA from Gram-negative bacterium (E. coli plasmid R100) and 1695 bp full length merA gene was amplified by PCR. A 1.695-kb DNA fragment of merA was inserted into isopropyl- -D-thiogalactopyranoside (IPTG) inducible bacterial expression vector pQE-30U/A. E. coli DH5 strains harboring the merA constructs showed higher mercury reductase enzyme (MerA) activity and expressed significantly more MerA than the control strains under aerobic conditions. The purified merA gene over expressed in the specific host E. coli BL21(DE3)Plys cells. Finally, expressed MerA protein was purifiedby Immobilized Metal-chelate Affinity Chromatography (IMAC) by using Ni- NTA column; and ~66.2 kDa bacterial MerA protein was detected after resolving on 10% sodium dodecyl sulphate poly acrylamide gel electrophoresis (SDS PAGE)

    Isolation and biochemical characterizations of the bacteria (Acidovorax avenae subsp. avenae) associated with red stripe disease of sugarcane

    Get PDF
    Studies on Acidovorax avenae subsp. avenae, associated with red stripe disease of sugarcane was conducted in the Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi during 2009 to 2010, in collaboration with Shakarganj Sugar Research Institute (SSRI), Jhang, Pakistan. Red stripe of sugarcane were recently observed on promising clones of sugarcane planted in autumn 2009 at Ashaba Research Farm of SSRI. Bacteria were isolated from diseased plants. These isolates yielded off white convex colonies on potato dextrose agar (PDA) media at 29°C with 1.7 to 1.9 mm diameter and were yellow on yeast extract dextrose chalk agar (YDC) media at 27°C with 1.8 to 2.0 mm diameter. The bacteria were rod shape measuring 0.5 to 0.6 × 1.4 to 1.6 μm on PDA and 0.6 to 0.7 × 1.5 to 1.7 μm on YDC. Bacterial culture was stored at different temperature levels for 150 days. Reisolation of bacterial culture which was stored at 4°C showed best result on YDC at 27°C after 150 days, whereas it showed positive result after 120 days on PDA at 29°C. Bacteria were gram negative, citrate utilization was positive, oxidase was negative, catalase was positive and urease was negative. Morphological appearance and biochemical characterizations identified the bacteria as A. avenae subsp. Avenae. In vitro screening for the efficacy of various antibiotics to inhibit the growth of A. avenae subsp. avenae on YDC media showed that ampicillin and vancomycin were most effective. Artificial inoculation on sugarcane against red stripe disease was observed. Observations were made upto six weeks for disease development. Out of 27 varieties, 16 were found resistant, four moderately resistant, five moderately susceptible and two susceptible.Key words: Sugarcane, yeast extract dextrose chalk agar (YDC), potato dextrose agar (PDA), Acidovorax avenae subsp. avenae, biochemical characterization, antibiotics

    Proteomic Analysis of the Cyst Stage of Entamoeba histolytica

    Get PDF
    We used tandem mass spectrometry to identify E. histolytica cyst proteins in 5 cyst positive stool samples. We report the identification of 417 non-redundant E. histolytica proteins including 195 proteins that were not identified in existing trophozoite derived proteome or EST datasets, consistent with cyst specificity. Because the cysts were derived directly from patient samples with incomplete purification, a limited number of proteins were identified (N = 417) that probably represent only a partial proteome. Nevertheless, the study succeeded in identifying proteins that are likely to be abundant in the cyst stage of the parasite. Several of these proteins may play roles in E. histolytica stage conversion or cyst function. Proteins identified in this study may be useful markers for diagnostic detection of E. histolytica cysts. Overall, the data generated in this study promises to aid the understanding of the cyst stage of the parasite which is vital for disease transmission and pathogenesis in E. histolytica

    Whole blood gene expression in infants with respiratory syncytial virus bronchiolitis

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of viral bronchiolitis in infants worldwide, and environmental, viral and host factors are all of importance for disease susceptibility and severity. To study the systemic host response to this disease we used the microarray technology to measure mRNA gene expression levels in whole blood of five male infants hospitalised with acute RSV, subtype B, bronchiolitis versus five one year old male controls exposed to RSV during infancy without bronchiolitis. The gene expression levels were further evaluated in a new experiment using quantitative real-time polymerase chain reaction (QRT-PCR) both in the five infants selected for microarray and in 13 other infants hospitalised with the same disease. RESULTS: Among the 30 genes most differentially expressed by microarray nearly 50% were involved in immunological processes. We found the highly upregulated interferon, alpha-inducible protein 27 (IFI27) and the highly downregulated gene Charcot-Leyden crystal protein (CLC) to be the two most differentially expressed genes in the microarray study. When performing QRT-PCR on these genes IFI27 was upregulated in all but one infant, and CLC was downregulated in all 18 infants, and similar to that given by microarray. CONCLUSION: The gene IFI27 is upregulated and the gene CLC is downregulated in whole blood of infants hospitalised with RSV, subtype B, bronchiolitis and is not reported before. More studies are needed to elucidate the specificity of these gene expressions in association with host response to this virus in bronchiolitis of moderate severity

    Clinical Spectrum and Management of Diabetic Ketoacidosis: Experience in A Tertiary Care Hospital

    Get PDF
    Abstract Background: Diabetic ketoacidosis (DKA) is an acute metabolic complication of diabetes mellitus (DM). It may be the presenting feature in type 1 DM, but more commonly it complicates previously diagnosed diabetic patients, both type 1 and type 2. If not recognized early and treated in a judicious way the outcome is often fatal

    IL-33-mediated protection against experimental cerebral malaria is linked to induction of Type 2 innate lymphoid cells, M2 macrophages and regulatory T cells

    Get PDF
    Author Summary Cerebral malaria (CM) caused by the parasite Plasmodium sp . is a fatal disease, especially in children. Currently there is no effective treatment. We report here our investigation on the role of a recently discovered cytokine IL-33, in treating experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. IL-33 protects the mice against ECM. The protection is accompanied by a reduction of Th1 response and the enhancement of type 2 cytokine response. We also found that IL-33 mediates its protective effect by inducing a population of type 2 innate lymphoid cells (ILC2), which then polarize macrophages to alternatively-activated phenotypes (M2). M2 in turn expand regulatory T cells (Tregs) which suppress the deleterious Th1 response. Our report therefore reveals hitherto unrecognised mechanisms of the regulation of ECM and provide a novel function of IL-33

    Factors affecting treatment-seeking for febrile illness in a malaria endemic block in Boudh district, Orissa, India: policy implications for malaria control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orissa state in eastern India accounts for the highest malaria burden to the nation. However, evidences are limited on its treatment-seeking behaviour in the state. We assessed the treatment-seeking behaviour towards febrile illness in a malaria endemic district in Orissa.</p> <p>Methods</p> <p>A cross-sectional community-based survey was carried out during the high malaria transmission season of 2006 in Boudh district. Respondents (n = 300) who had fever with chills within two weeks prior to the day of data collection were selected through a multi-stage sampling and interviewed with a pre-tested and structured interview schedule. Malaria treatment providers (n = 23) were interviewed in the district to gather their insights on factors associated with prompt and effective treatment through a semi-structured and open-ended interview guideline.</p> <p>Results</p> <p>Majority of respondents (n = 281) sought some sort of treatment e.g. government health facility (35.7%), less qualified providers (31.3%), and community level health workers and volunteers (24.3%). The single most common reason (66.9%) for choosing a provider was proximity. Over a half (55.7%) sought treatment from appropriate providers within 48 hours of onset of symptoms. Respondents under five years (OR 2.00, 95% CI 0.84-4.80, <it>P </it>= 0.012), belonging to scheduled tribe community (OR 2.13, 95% CI 1.11-4.07, <it>P </it>= 0.022) and visiting a provider more than five kilometers (OR 2.04, 95% CI 1.09-3.83, <it>P </it>= 0.026) were more likely to have delayed or inappropriate treatment. Interviews with the providers indicated that patients' lack of trust in community volunteers providing treatment led to inappropriate treatment-seeking from the less qualified providers. The reasons for the lack of trust included drug side effects, suspicions about drug quality, stock-outs of drugs and inappropriate attitude of the provider.</p> <p>Conclusion</p> <p>Large-scale involvement of less qualified providers is suggested in the malaria control programme as volunteers after appropriate capacity development since the community has more trust in them. This should be supported by uninterrupted supply of drugs to the community volunteers, and involvement of the community-based organizations and volunteers in the planning, implementation, and monitoring of malaria control services. There is also a need for continuous and rigorous impact evaluations of the program to make necessary modifications, scale up and to prevent drug resistance.</p

    Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei.

    Get PDF
    Melioidosis, caused by Burkholderia pseudomallei, is endemic in northeastern Thailand and Northern Australia. Severe septicemic melioidosis is associated with high levels of pro-inflammatory cytokines and is correlated with poor clinical outcomes. IL-10 is an immunoregulatory cytokine, which in other infections can control the expression of pro-inflammatory cytokines, but its role in melioidosis has not been addressed. Here, whole blood of healthy seropositive individuals (n = 75), living in N. E. Thailand was co-cultured with B. pseudomallei and production of IL-10 and IFN-γ detected and the cellular sources identified. CD3- CD14+ monocytes were the main source of IL-10. Neutralization of IL-10 increased IFN-γ, IL-6 and TNF-α production and improved bacteria killing. IFN-γ production and microbicidal activity were impaired in individuals with diabetes mellitus (DM). In contrast, IL-10 production was unimpaired in individuals with DM, resulting in an IL-10 dominant cytokine balance. Neutralization of IL-10 restored the IFN-γ response of individuals with DM to similar levels observed in healthy individuals and improved killing of B. pseudomallei in vitro. These results demonstrate that monocyte derived IL-10 acts to inhibit potentially protective cell mediated immune responses against B. pseudomallei, but may also moderate the pathological effects of excessive cytokine production during sepsis

    The Dynamics of EBV Shedding Implicate a Central Role for Epithelial Cells in Amplifying Viral Output

    Get PDF
    To develop more detailed models of EBV persistence we have studied the dynamics of virus shedding in healthy carriers. We demonstrate that EBV shedding into saliva is continuous and rapid such that the virus level is replaced in ≤2 minutes, the average time that a normal individual swallows. Thus, the mouth is not a reservoir of virus but a conduit through which a continuous flow stream of virus passes in saliva. Consequently, virus is being shed at a much higher rate than previously thought, a level too high to be accounted for by replication in B cells in Waldeyer's ring alone. Virus shedding is relatively stable over short periods (hours-days) but varies through 3.5 to 5.5 logs over longer periods, a degree of variation that also cannot be accounted for solely by replication in B cells. This variation means, contrary to what is generally believed, that the definition of high and low shedder is not so much a function of variation between individuals but within individuals over time. The dynamics of shedding describe a process governing virus production that is occurring independently ≤3 times at any moment. This process grows exponentially and is then randomly terminated. We propose that these dynamics are best explained by a model where single B cells sporadically release virus that infects anywhere from 1 to 5 epithelial cells. This infection spreads at a constant exponential rate and is terminated randomly, resulting in infected plaques of epithelial cells ranging in size from 1 to 105 cells. At any one time there are a very small number (≤3) of plaques. We suggest that the final size of these plaques is a function of the rate of infectious spread within the lymphoepithelium which may be governed by the structural complexity of the tissue but is ultimately limited by the immune response
    corecore