3,417 research outputs found

    Interaction induced fractional Bloch and tunneling oscillations

    Full text link
    We study the dynamics of few interacting bosons in a one-dimensional lattice with dc bias. In the absence of interactions the system displays single particle Bloch oscillations. For strong interaction the Bloch oscillation regime reemerges with fractional Bloch periods which are inversely proportional to the number of bosons clustered into a bound state. The interaction strength is affecting the oscillation amplitude. Excellent agreement is found between numerical data and a composite particle dynamics approach. For specific values of the interaction strength a particle will tunnel from the interacting cloud to a well defined distant lattice location.Comment: 4 pages, 4 figure

    Three loop HTL perturbation theory at finite temperature and chemical potential

    Full text link
    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.Comment: 4 pages, 4 figure

    The influence of nitrogen and phosphorus on the growth of a diatom Skeletonema costatum (Greville) Cleve

    Get PDF
    Nitrogen and phosphorus requirements of a chain-forming diatom, Skeletonema costatum (Greville) Cleve, collected from Yatsushiro Sea, Japan, were investigated in a laboratory culture experiment. Sodium nitrate and sodium glycerophosphate were used as nitrogen and phosphorus sources, respectively. Cultures were grown in modified Provasoli's ASP2NTA medium (Provasoli et al. 1957) at 25±1°C, light intensity 60 µE mˉ² secˉ¹ and photoperiod 12:12-h, L:D cycle. Optimum growth was observed at nitrate concentrations of 3-10 mglˉ¹ and phosphate concentrations of 1.5-15 mglˉ¹. Adequate growth was also found at the nitrate concentration of up to as high as 300 mglˉ¹. Significantly poorer growth was found at lower nitrate (15 mglˉ¹) concentrations. From the present study, it is concluded that S. costatum can grow well at wide ranges of nitrate concentrations but is sensitive to higher phosphate concentrations

    Physiological observations on a diatom Skeletonema costatum (Greville) Cleve

    Get PDF
    A chain-forming diatom Skeletonema costatum (Greville) Cleve collected from Yatsushiro Sea, Japan was cultured to determine the optimum level of some physico-chemical factors for their growth under laboratory conditions. Filtered and sterilized aged sea water enriched by adding nutrient solution (Provasoli 1968) was used as the culture medium. The plankton could tolerate a wide range of salinities (3-55 ppt). Optimum growth was observed at salinities of 20-35 ppt, temperatures of 20-25°C, light intensities of 80-120µE mˉ² secˉ¹ and pH between 7.5 and 8.0. Growth did not occur at salinities below 3 ppt and at temperatures above 30°C. From the present study, it is concluded that S. costatum was extremely euryhaline and tolerable to very low salinities

    Bipartite entanglement entropy in fractional quantum Hall states

    Get PDF
    We present a detailed analysis of bipartite entanglement entropies in fractional quantum Hall (FQH) states, considering both abelian (Laughlin) and non-abelian (Moore-Read) states. We derive upper bounds for the entanglement between two subsets of the particles making up the state. We also consider the entanglement between spatial regions supporting a FQH state. Using the latter, we show how the so-called topological entanglement entropy of a FQH state can be extracted from wavefunctions for a limited number of particles.Comment: 12 pages, 7 figures, small corrections to table III and references adde

    Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species

    Get PDF
    Cultivated tomato species develop leaf injury while grown in continuous light (CL). Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. ‘Aromata’) and a wild tomato species (Solanum pimpinellifolium L.) were compared in this study aiming to analyse the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16ºC (P16D10 or control); CL with a constant temperature of 23ºC (P24D0); CL with a variable temperature of 26/16ºC (P24D10). The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum), and to a less degree to the wild species (S. pimpinellifolium). The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm

    Particle partitioning entanglement in itinerant many-particle systems

    Full text link
    For itinerant fermionic and bosonic systems, we study `particle entanglement', defined as the entanglement between two subsets of particles making up the system. We formulate the general structure of particle entanglement in many-fermion ground states, analogous to the `area law' for the more usually studied entanglement between spatial regions. Basic properties of particle entanglement are uncovered by considering relatively simple itinerant models.Comment: 4 pages, 4 figure

    Interaction between amorphous zirconia nanoparticles and graphite: electrochemical applications for gallic acid sensing using carbon paste electrodes in wine.

    Get PDF
    Amorphous zirconium oxide nanoparticles (ZrO2) have been used for the first time, to modify carbon paste electrode (CPE) and used as a sensor for the electrochemical determination of gallic acid (GA). The voltammetric results of the ZrO2 nanoparticles-modified CPE showed efficient electrochemical oxidation of gallic acid, with a significantly enhanced peak current from 261 µA ± 3 to about 451 µA ± 1. The modified surface of the electrode and the synthesised zirconia nanoparticles were characterised by scanning electrode microscopy (SEM), Energy-dispersive x-ray spectroscopy (EDXA), X-ray powdered diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Meanwhile, the electrochemical behaviour of GA on the surface of the modified electrode was studied using differential pulse voltammetry (DPV), showing a sensitivity of the electrode for GA determination, within a concentration range of 1 × 10−6 mol L−1 to 1 × 10−3 mol L−1 with a correlation coefficient of R2 of 0.9945 and a limit of detection of 1.24 × 10−7 mol L−1 (S/N = 3). The proposed ZrO2 nanoparticles modified CPE was successfully used for the determination of GA in red and white wine, with concentrations of 0.103 mmol L−1 and 0.049 mmol L−1 respectively
    • …
    corecore