49 research outputs found

    Hardware Acceleration Technologies in Computer Algebra: Challenges and Impact

    Get PDF
    The objective of high performance computing (HPC) is to ensure that the computational power of hardware resources is well utilized to solve a problem. Various techniques are usually employed to achieve this goal. Improvement of algorithm to reduce the number of arithmetic operations, modifications in accessing data or rearrangement of data in order to reduce memory traffic, code optimization at all levels, designing parallel algorithms to reduce span are some of the attractive areas that HPC researchers are working on. In this thesis, we investigate HPC techniques for the implementation of basic routines in computer algebra targeting hardware acceleration technologies. We start with a sorting algorithm and its application to sparse matrix-vector multiplication for which we focus on work on cache complexity issues. Since basic routines in computer algebra often provide a lot of fine grain parallelism, we then turn our attention to manycore architectures on which we consider dense polynomial and matrix operations ranging from plain to fast arithmetic. Most of these operations are combined within a bivariate system solver running entirely on a graphics processing unit (GPU)

    Have coastal embankments reduced flooding in Bangladesh?

    Get PDF
    From the 1960s, embankments have been constructed in south western coastal region of Bangladesh to provide protection against flooding, but the success of the polder programme is disputed. We present analysis of floods during the years 1988–2012, diagnosing whether the floods were attributable to monsoonal precipitation (pluvial flooding), high upstream river discharge into the tidal delta (fluvio-tidal flooding), or cyclone-induced storm surges. We find that pluvial flooding was the most frequent, but typically resulted in less flooded area (11.44% of the region on average)compared with the other forms of flooding. The greatest area of inundation (48% of total area)occurring in 2001 as a consequence of fluvio-tidal and surge flooding, whilst cyclone Sidr in 2007 flooded 35% of the area. We modelled these different forms of inundation to estimate what flooding might have been had the polders not been constructed. For the ‘no embankment’ counter-factual scenario, our model demonstrated that because of a combination of subsidence and inadequate drainage, construction of the polders has increased the pluvial flooded area by 6.5% on average (334 km2). However, during the 1998 fluvio-tidal flood, the embankments protected an estimated 54% of the area from flooding. During the cyclone Sidr storm surge event, embankment failure in several polders and pluvial inundation resulted in 35% area inundation, otherwise, the total inundation would have been 18% area. We conclude that whilst polders have provided protection against storm surges and fluvio-tidal events of moderate severity, they have exacerbated more frequent pluvial flooding and promoted potential flooding impacts during the most extreme storm surges

    Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    Get PDF
    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (∼20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh

    A computational study of sparse matrix storage schemes

    Get PDF
    xi, 76 leaves : ill. ; 29 cm.The efficiency of linear algebra operations for sparse matrices on modern high performance computing system is often constrained by the available memory bandwidth. We are interested in sparse matrices whose sparsity pattern is unknown. In this thesis, we study the efficiency of major storage schemes of sparse matrices during multiplication with dense vector. A proper reordering of columns or rows usually results in reduced memory traffic due to the improved data reuse. This thesis also proposes an efficient column ordering algorithm based on binary reflected gray code. Computational experiments show that this ordering results in increased performance in computing the product of a sparse matrix with a dense vector

    Uptake of climate change adaptation research results in South Asia

    Get PDF
    Climate Resilience and National Resilience programs focus on formulating the Bangladesh National Adaptation Plan (NAP) for long-term adaptation investments and enhancing the national capacity to integrate climate change adaptation (CCA) in planning, budgeting, and financial tracking process. However, these programs and projects need a system-level quantitative tool to assess the requirement for adaptations at different scales and consequently decide on adaptation financing for these programs and projects. The current project is built on the earlier findings of the DECCMA project to address the above issues, with the target to add the necessary refinement through incorporating the equity, accessibility, adequacy, and gender dimensions to be useful at different scales of adaptation for climate change. The Dynamic Adaptation Model (DAM) is a product that has been developed gradually. It can be applied at different scales that can support the different communities and sectorial agencies/departments to guide local and national planning to adaptations while prioritizing in selecting appropriate options in different programs and projects to ensure the efficient use of available resources. DAM is developed based on strong mathematical formulation supported by field evidence. The model is calibrated and validated using field data to quantify the present-day adaptation need and now is being tested for some of the proposed adaptations in the NAP processes to assess its usefulness at the national level. Moreover, it is the home-grown model; therefore, the required customized version for different communities and agencies is possible through updates in the future with its extension for new areal coverage in collaboration with the developers and the alignment of the recent national initiatives. These are the ongoing processes essential to make it worthwhile for the mainstream national adaptation plan that needs further work

    The physical sustainability of the coastal zone of the Ganges-Brahmaputra-Meghna delta under climatic and anthropogenic stresses

    Get PDF
    The Ganges-Brahmaputra-Meghna (GBM) delta is one of the world’s largest deltas, and consists of large areas of low flat lands formed by the deposition of sediment from the GBM rivers. However, recent estimates have projected between 200~1000 mm of climate-driven sea-level rise by the end of the 21st century, at an average rate of ~6 mm/yr. Eustatic sea-level rise is further compounded by subsidence of the delta, which in the coastal fringes varies from 0.2 to 7.5 mm/yr, at an average value of ~2.0 mm/yr. Therefore, the combined effect of sea-level rise and subsidence (termed relative sea-level rise, RSLR) is around 8.0 mm/yr. Such high values of RSLR raise the question of whether sediment deposition on the surface of the delta is sufficient to maintain the delta surface above sea level. Moreover, as the total fluvial sediment influx to the GBM delta system is known to be decreasing, the retained portion of fluvial sediment on the delta surface is also likely decreasing, reducing the potential to offset RSLR. Within this context, the potential of various interventions geared at promoting greater retention of sediment on the delta surface is explored using numerical experiments under different flow-sediment regime and anthropogenic interventions. We find that for the existing, highly managed, conditions, the retained portion of fluvial sediment on the delta surface varies between 22% and 50% during average (when about 20% of the total floodplain in the country is inundated) and extreme (> 60% of the total floodplain in the country is inundated) flood years, respectively. However, the degree to which sediment has the potential to be deposited on the delta surface increases by up to 10% when existing anthropogenic interventions such as polders that act as barriers to delta-plain sedimentation are removed. While dismantling existing interventions is not a politically realistic proposition, more quasi-natural conditions can be reestablished through local- sediment management using tidal river management, cross dams, dredging, bandal-like structures and/or combinations of the above measures

    Projected changes in area of the Sundarban mangrove forest in Bangladesh due to SLR by 2100

    Get PDF
    The Sundarbans mangrove ecosystem, located in India and Bangladesh, is recognized as a global priority for biodiversity conservation and is an important provider of ecosystem services such as numerous goods and protection against storm surges. With global mean sea-level rise projected as up to 0.98m or greater by 2100 relative to the baseline period (1985-2005), the Sundarbans – mean elevation presently approximately 2 m above mean sea-level – is under threat from inundation and subsequent wetland loss; however the magnitude of loss remains unclear. We used remote and field measurements, geographic information systems and simulation modelling to investigate the potential effects of three sea-level rise scenarios on the Sundarbans within coastal Bangladesh. We illustrate how the Sea Level Affecting Marshes Model (SLAMM) is able to reproduce the observed area losses for the period 2000-2010. Using this calibrated model and assuming that mean sea-level is a better proxy than the SLAMM assumed mean lower low water for Mangrove area delineation, the estimated mangrove area net losses (relative to year 2000) are 81-178 km2, 111-376 km2 and 583-1393 km2 for relative sea-level rise scenarios to 2100 of 0.46m, 0.75m and 1.48m, respectively and net subsidence of ±2.5 mm/year. These area losses are very small (<10 percent of present day area) and significantly smaller than previous research has suggested. Our simulations also suggest that erosion rather than inundation may remain the dominant loss driver to 2100 under certain scenarios of sea-level rise and net subsidence. Only under the highest scenarios does inundation due to sea-level rise become the dominant loss process

    Social vulnerability to environmental hazards in the Ganges-Brahmaputra-Meghna delta, India and Bangladesh

    Get PDF
    The coastal areas of the Ganges-Brahmaputra-Meghna delta are acknowledged hotspots of environmental and social concerns. This reflects a large, mainly rural population of 56.7 million, which is exposed to a range of natural hazards exacerbated by climate change, sea-level rise and subsidence. There are high levels of poverty and limited social well-being, including poor access to education, health, drinking water, and sanitation facilities. A spatial assessment of social vulnerability can indicate which communities are more susceptible to environmental hazards, while a temporal assessment may indicate how such vulnerability is changing due to development and other drivers. This study provides the first analysis of social vulnerability across the entire coastal delta within Bangladesh and India. It uses consistent and common secondary data at the sub-district level for two time periods: 2001 and 2011. These are used to construct a socio-economic vulnerability index across the region using Principal Component Analysis. Three main conclusions emerge. Firstly, there is a cross-shore social vulnerability gradient across the whole delta, with more vulnerable people living near the coast. Here, the benefits of access to marine fisheries are not apparent. Secondly, non-agricultural development and economic expansion have reduced the vulnerability significantly, showing its benefits. Lastly, despite general positive development trends, shocks due to major cyclone landfall appear to have enhanced vulnerability in the impacted areas. Further comprehensive analysis across the whole delta is recommended to improve our understanding of the common threats and possible solutions
    corecore